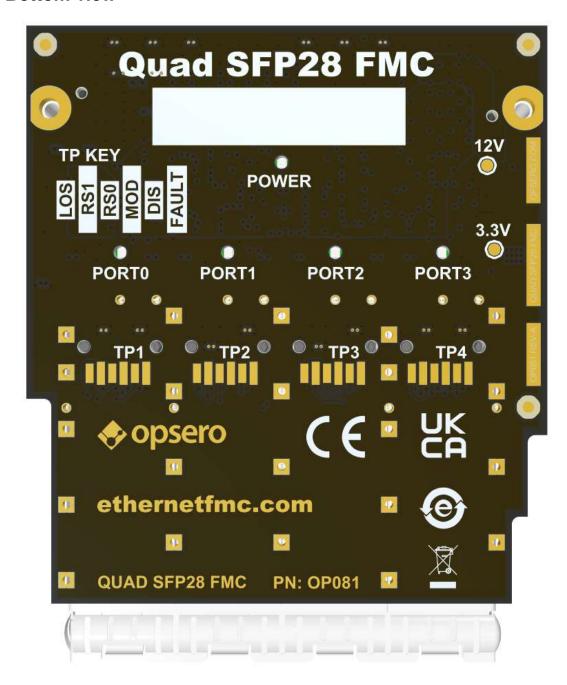


# Quad SFP28 FMC

## **Overview**

## **Description**

The Quad SFP28 FMC is an add-on expansion board (FPGA Mezzanine Card) for FPGA and SoC-based development boards. It has four SFP28 module slots, allowing the connection of up to four SFP, SFP+ or SFP28 modules to the carrier development board. The mezzanine card features a jitter-attenuating clock multiplier, supporting Synchronous Ethernet applications, and uses level translators to support a wide range of FPGA I/O voltages from 1.2VDC to 3.3VDC.


#### Top view



Quad SFP28 FMC top



#### **Bottom view**



Quad SFP28 FMC bottom

**Application Example** 



Quad SFP28 FMC with ZCU106

### **Features**

- 4x SFP28 slots compatible with SFP, SFP+ and SFP28 modules
- Jitter-attenuating clock multiplier with support for recovered clock and SyncE applications
- Supports a wide range of I/O voltages (VADJ): 1.2V-3.3V
- High pin count FMC connector
- FMC pinout conforms to VITA 57.1 FMC Standard
- Testpoints to aid debugging
- Example designs with sources for several development boards
- Standalone and <u>PetaLinux</u> example designs

# **Ordering**

The Quad SFP28 FMC can be purchased from the following suppliers:



| Vendor   | Part name      | Part number  |
|----------|----------------|--------------|
| Opsero   | Quad SFP28 FMC | <u>OP081</u> |
| Digi-Key | Quad SFP28 FMC | <u>OP081</u> |

Included with the Quad SFP28 FMC are 2x machine screws for fixing the mezzanine card to the carrier board.

# **Pin Configuration**

## Pinout table

The Quad SFP28 FMC has a high pin count FPGA Mezzanine Card (FMC) connector, providing the connections to the FPGA on the development board. The following table defines the pinout of the FMC connector and describes each pin's purpose on this mezzanine card.

| Pin | Pin name  | Net       | Description            |
|-----|-----------|-----------|------------------------|
| A1  | GND       | GND       | Ground                 |
| A2  | DP1_M2C_P | DP1_M2C_P | Port 1 SFP RX positive |
| А3  | DP1_M2C_N | DP1_M2C_N | Port 1 SFP RX negative |
| A4  | GND       | GND       | Ground                 |
| A5  | GND       | GND       | Ground                 |
| A6  | DP2_M2C_P | DP2_M2C_P | Port 2 SFP RX positive |
| A7  | DP2_M2C_N | DP2_M2C_N | Port 2 SFP RX negative |
| A8  | GND       | GND       | Ground                 |
| A9  | GND       | GND       | Ground                 |
| A10 | DP3_M2C_P | DP3_M2C_P | Port 3 SFP RX positive |
| A11 | DP3_M2C_N | DP3_M2C_N | Port 3 SFP RX negative |
| A12 | GND       | GND       | Ground                 |
| A13 | GND       | GND       | Ground                 |



| A14 | DP4_M2C_P | N/C       | Not connected          |
|-----|-----------|-----------|------------------------|
| A15 | DP4_M2C_N | N/C       | Not connected          |
| A16 | GND       | GND       | Ground                 |
| A17 | GND       | GND       | Ground                 |
| A18 | DP5_M2C_P | N/C       | Not connected          |
| A19 | DP5_M2C_N | N/C       | Not connected          |
| A20 | GND       | GND       | Ground                 |
| A21 | GND       | GND       | Ground                 |
| A22 | DP1_C2M_P | DP1_C2M_P | Port 1 SFP TX positive |
| A23 | DP1_C2M_N | DP1_C2M_N | Port 1 SFP TX negative |
| A24 | GND       | GND       | Ground                 |
| A25 | GND       | GND       | Ground                 |
| A26 | DP2_C2M_P | DP2_C2M_P | Port 2 SFP TX positive |
| A27 | DP2_C2M_N | DP2_C2M_N | Port 2 SFP TX negative |
| A28 | GND       | GND       | Ground                 |
| A29 | GND       | GND       | Ground                 |
| A30 | DP3_C2M_P | DP3_C2M_P | Port 3 SFP TX positive |
| A31 | DP3_C2M_N | DP3_C2M_N | Port 3 SFP TX negative |
| A32 | GND       | GND       | Ground                 |
| A33 | GND       | GND       | Ground                 |
| A34 | DP4_C2M_P | N/C       | Not connected          |
| A35 | DP4_C2M_N | N/C       | Not connected          |
| A36 | GND       | GND       | Ground                 |
| A37 | GND       | GND       | Ground                 |
|     |           |           |                        |





| A38 | DP5_C2M_P     | N/C           | Not connected                              |
|-----|---------------|---------------|--------------------------------------------|
| A39 | DP5_C2M_N     | N/C           | Not connected                              |
| A40 | GND           | GND           | Ground                                     |
| B1  | CLK_DIR       | N/C           | Not connected                              |
| B2  | GND           | GND           | Ground                                     |
| В3  | GND           | GND           | Ground                                     |
| B4  | DP9_M2C_P     | N/C           | Not connected                              |
| B5  | DP9_M2C_N     | N/C           | Not connected                              |
| B6  | GND           | GND           | Ground                                     |
| B7  | GND           | GND           | Ground                                     |
| B8  | DP8_M2C_P     | N/C           | Not connected                              |
| B9  | DP8_M2C_N     | N/C           | Not connected                              |
| B10 | GND           | GND           | Ground                                     |
| B11 | GND           | GND           | Ground                                     |
| B12 | DP7_M2C_P     | N/C           | Not connected                              |
| B13 | DP7_M2C_N     | N/C           | Not connected                              |
| B14 | GND           | GND           | Ground                                     |
| B15 | GND           | GND           | Ground                                     |
| B16 | DP6_M2C_P     | N/C           | Not connected                              |
| B17 | DP6_M2C_N     | N/C           | Not connected                              |
| B18 | GND           | GND           | Ground                                     |
| B19 | GND           | GND           | Ground                                     |
| B20 | GBTCLK1_M2C_P | GBTCLK1_M2C_P | Clock oscillator Si5328<br>CLKOUT2+ output |



| B21 | GBTCLK1_M2C_N | GBTCLK1_M2C_N | Clock oscillator Si5328<br>CLKOUT2- output |
|-----|---------------|---------------|--------------------------------------------|
| B22 | GND           | GND           | Ground                                     |
| B23 | GND           | GND           | Ground                                     |
| B24 | DP9_C2M_P     | N/C           | Not connected                              |
| B25 | DP9_C2M_N     | N/C           | Not connected                              |
| B26 | GND           | GND           | Ground                                     |
| B27 | GND           | GND           | Ground                                     |
| B28 | DP8_C2M_P     | N/C           | Not connected                              |
| B29 | DP8_C2M_N     | N/C           | Not connected                              |
| B30 | GND           | GND           | Ground                                     |
| B31 | GND           | GND           | Ground                                     |
| B32 | DP7_C2M_P     | N/C           | Not connected                              |
| B33 | DP7_C2M_N     | N/C           | Not connected                              |
| B34 | GND           | GND           | Ground                                     |
| B35 | GND           | GND           | Ground                                     |
| B36 | DP6_C2M_P     | N/C           | Not connected                              |
| B37 | DP6_C2M_N     | N/C           | Not connected                              |
| B38 | GND           | GND           | Ground                                     |
| B39 | GND           | GND           | Ground                                     |
| B40 | RES0          | N/C           | Not connected                              |
| C1  | GND           | GND           | Ground                                     |
| C2  | DP0_C2M_P     | DP0_C2M_P     | Port 0 SFP TX positive                     |
| C3  | DP0_C2M_N     | DP0_C2M_N     | Port 0 SFP TX negative                     |
| C4  | GND           | GND           | Ground                                     |



| C5  | GND       | GND             | Ground                        |
|-----|-----------|-----------------|-------------------------------|
| C6  | DP0_M2C_P | DP0_M2C_P       | Port 0 SFP RX positive        |
| C7  | DP0_M2C_N | DP0_M2C_N       | Port 0 SFP RX negative        |
| C8  | GND       | GND             | Ground                        |
| C9  | GND       | GND             | Ground                        |
| C10 | LA06_P    | CLK_LOS_ALARM_T | Not connected                 |
| C11 | LA06_N    | I2C_SW_RST_N_T  | Not connected                 |
| C12 | GND       | GND             | Ground                        |
| C13 | GND       | GND             | Ground                        |
| C14 | LA10_P    | SFP2_RS1_T      | Port 2 SFP Rate Select RS1    |
| C15 | LA10_N    | SFP2_RS0_T      | Port 2 SFP Rate Select RS0    |
| C16 | GND       | GND             | Ground                        |
| C17 | GND       | GND             | Ground                        |
| C18 | LA14_P    | SFP3_RS1_T      | Port 3 SFP Rate Select RS1    |
| C19 | LA14_N    | SFP3_RS0_T      | Port 3 SFP Rate Select RS0    |
| C20 | GND       | GND             | Ground                        |
| C21 | GND       | GND             | Ground                        |
| C22 | LA18_P_CC | SFP3_LOS_T      | Port 3 SFP Loss of Signal LOS |
| C23 | LA18_N_CC | SFP3_MOD_ABS_T  | Port 3 SFP MOD_ABS            |
| C24 | GND       | GND             | Ground                        |
| C25 | GND       | GND             | Ground                        |
| C26 | LA27_P    | N/C             | Not connected                 |
| C27 | LA27_N    | N/C             | Not connected                 |
| C28 | GND       | GND             | Ground                        |



| C29 | GND           | GND            | Ground                                     |
|-----|---------------|----------------|--------------------------------------------|
| C30 | SCL           | I2C_SCL        | I2C Clock                                  |
| C31 | SDA           | I2C_SDA        | I2C Data (bidirectional)                   |
| C32 | GND           | GND            | Ground                                     |
| C33 | GND           | GND            | Ground                                     |
| C34 | GA0           | GA0            | EEPROM Address Bit 1 (A1)                  |
| C35 | 12P0V_1       | 12V0           | 12VDC                                      |
| C36 | GND           | GND            | Ground                                     |
| C37 | 12P0V_2       | 12V0           | 12VDC                                      |
| C38 | GND           | GND            | Ground                                     |
| C39 | 3P3V_1        | 3V3            | Not connected                              |
| C40 | GND           | GND            | Ground                                     |
| D1  | PG_C2M        | PG             | Power Good (Driven by carrier)             |
| D2  | GND           | GND            | Ground                                     |
| D3  | GND           | GND            | Ground                                     |
| D4  | GBTCLK0_M2C_P | GBTCLK0_M2C_P  | Clock oscillator Si5328<br>CLKOUT1+ output |
| D5  | GBTCLK0_M2C_N | GBTCLK0_M2C_N  | Clock oscillator Si5328<br>CLKOUT1- output |
| D6  | GND           | GND            | Ground                                     |
| D7  | GND           | GND            | Ground                                     |
| D8  | LA01_P_CC     | SFP0_GRN_LED_T | Port 0 SFP User bicolor LED Green          |
| D9  | LA01_N_CC     | SFP0_RED_LED_T | Port 0 SFP User bicolor LED                |
|     |               |                | Red                                        |



| D11 | LA05_P    | SFP1_GRN_LED_T    | Port 1 SFP User bicolor LED Green   |
|-----|-----------|-------------------|-------------------------------------|
| D12 | LA05_N    | SFP1_RED_LED_T    | Port 1 SFP User bicolor LED Red     |
| D13 | GND       | GND               | Ground                              |
| D14 | LA09_P    | SFP2_LOS_T        | Port 2 SFP Loss of Signal LOS       |
| D15 | LA09_N    | SFP2_MOD_ABS_T    | Port 2 SFP MOD_ABS                  |
| D16 | GND       | GND               | Ground                              |
| D17 | LA13_P    | SFP3_GRN_LED_T    | Port 3 SFP User bicolor LED Green   |
| D18 | LA13_N    | SFP3_RED_LED_T    | Port 3 SFP User bicolor LED Red     |
| D19 | GND       | GND               | Ground                              |
| D20 | LA17_P_CC | SFP3_TX_FAULT_T   | Port 3 SFP TX fault                 |
| D21 | LA17_N_CC | SFP3_TX_DISABLE_T | Port 3 SFP TX disable (FPGA to SFP) |
| D22 | GND       | GND               | Ground                              |
| D23 | LA23_P    | N/C               | Not connected                       |
| D24 | LA23_N    | N/C               | Not connected                       |
| D25 | GND       | GND               | Ground                              |
| D26 | LA26_P    | N/C               | Not connected                       |
| D27 | LA26_N    | N/C               | Not connected                       |
| D28 | GND       | GND               | Ground                              |
| D29 | ТСК       | N/C               | Not connected                       |
| D30 | TDI       | TDI               | Connects to TDO to close JTAG chain |



| D31 | TDO       | TDO    | Connects to TDI to close JTAG chain |
|-----|-----------|--------|-------------------------------------|
| D32 | 3P3VAUX   | 3V3AUX | 3.3VDC Power supply for EEPROM      |
| D33 | TMS       | N/C    | Not connected                       |
| D34 | TRST_L    | N/C    | Not connected                       |
| D35 | GA1       | GA1    | EEPROM Address Bit 0 (A0)           |
| D36 | 3P3V_2    | 3V3    | 3.3VDC main FMC power supply        |
| D37 | GND       | GND    | Ground                              |
| D38 | 3P3V_3    | 3V3    | 3.3VDC main FMC power supply        |
| D39 | GND       | GND    | Ground                              |
| D40 | 3P3V_4    | 3V3    | 3.3VDC main FMC power supply        |
| E1  | GND       | GND    | Ground                              |
| E2  | HA01_P_CC | N/C    | Not connected                       |
| E3  | HA01_N_CC | N/C    | Not connected                       |
| E4  | GND       | GND    | Ground                              |
| E5  | GND       | GND    | Ground                              |
| E6  | HA05_P    | N/C    | Not connected                       |
| E7  | HA05_P    | N/C    | Not connected                       |
| E8  | GND       | GND    | Ground                              |
| E9  | HA09_P    | N/C    | Not connected                       |
| E10 | HA09_P    | N/C    | Not connected                       |
| E11 | GND       | GND    | Ground                              |
| E12 | HA13_P    | N/C    | Not connected                       |
| E13 | HA13_P    | N/C    | Not connected                       |
|     |           |        |                                     |



| E14 | GND    | GND | Ground        |
|-----|--------|-----|---------------|
| E15 | HA16_P | N/C | Not connected |
| E16 | HA16_P | N/C | Not connected |
| E17 | GND    | GND | Ground        |
| E18 | HA20_P | N/C | Not connected |
| E19 | HA20_P | N/C | Not connected |
| E20 | GND    | GND | Ground        |
| E21 | HB03_P | N/C | Not connected |
| E22 | HB03_P | N/C | Not connected |
| E23 | GND    | GND | Ground        |
| E24 | HB05_P | N/C | Not connected |
| E25 | HB05_P | N/C | Not connected |
| E26 | GND    | GND | Ground        |
| E27 | HB09_P | N/C | Not connected |
| E28 | HB09_P | N/C | Not connected |
| E29 | GND    | GND | Ground        |
| E30 | HB13_P | N/C | Not connected |
| E31 | HB13_P | N/C | Not connected |
| E32 | GND    | GND | Ground        |
| E33 | HB19_P | N/C | Not connected |
| E34 | HB19_P | N/C | Not connected |
| E35 | GND    | GND | Ground        |
| E36 | HB21_P | N/C | Not connected |
| E37 | HB21_P | N/C | Not connected |
|     |        |     |               |



| E38 | GND       | GND | Ground                             |
|-----|-----------|-----|------------------------------------|
| E39 | VADJ_1    | N/C | Adjustable IO power supply voltage |
| E40 | GND       | GND | Ground                             |
| F1  | PG_M2C    | N/C | Not connected                      |
| F2  | GND       | GND | Ground                             |
| F3  | GND       | GND | Ground                             |
| F4  | HA00_P_CC | N/C | Not connected                      |
| F5  | HA00_P_CC | N/C | Not connected                      |
| F6  | GND       | GND | Ground                             |
| F7  | HA04_P    | N/C | Not connected                      |
| F8  | HA04_P    | N/C | Not connected                      |
| F9  | GND       | GND | Ground                             |
| F10 | HA08_P    | N/C | Not connected                      |
| F11 | HA08_P    | N/C | Not connected                      |
| F12 | GND       | GND | Ground                             |
| F13 | HA12_P    | N/C | Not connected                      |
| F14 | HA12_P    | N/C | Not connected                      |
| F15 | GND       | GND | Ground                             |
| F16 | HA15_P    | N/C | Not connected                      |
| F17 | HA15_P    | N/C | Not connected                      |
| F18 | GND       | GND | Ground                             |
| F19 | HA19_P    | N/C | Not connected                      |
| F20 | HA19_P    | N/C | Not connected                      |
| F21 | GND       | GND | Ground                             |
|     |           |     |                                    |



| F22 | HB02_P       | N/C | Not connected                      |
|-----|--------------|-----|------------------------------------|
| F23 | HB02_P       | N/C | Not connected                      |
| F24 | GND          | GND | Ground                             |
| F25 | HB04_P       | N/C | Not connected                      |
| F26 | HB04_P       | N/C | Not connected                      |
| F27 | GND          | GND | Ground                             |
| F28 | HB08_P       | N/C | Not connected                      |
| F29 | HB08_P       | N/C | Not connected                      |
| F30 | GND          | GND | Ground                             |
| F31 | HB12_P       | N/C | Not connected                      |
| F32 | HB12_P       | N/C | Not connected                      |
| F33 | GND          | GND | Ground                             |
| F34 | HB16_P       | N/C | Not connected                      |
| F35 | HB16_P       | N/C | Not connected                      |
| F36 | GND          | GND | Ground                             |
| F37 | HB20_P       | N/C | Not connected                      |
| F38 | HB20_P       | N/C | Not connected                      |
| F39 | GND          | GND | Ground                             |
| F40 | VADJ_2       | N/C | Adjustable IO power supply voltage |
| J1  | GND          | GND | Ground                             |
| J2  | CLK3_BIDIR_P | N/C | Not connected                      |
| J3  | CLK3_BIDIR_P | N/C | Not connected                      |
| J4  | GND          | GND | Ground                             |
| J5  | GND          | GND | Ground                             |
|     |              |     |                                    |



| J6  | HA03_P | N/C | Not connected |
|-----|--------|-----|---------------|
| J7  | HA03_P | N/C | Not connected |
| J8  | GND    | GND | Ground        |
| J9  | HA07_P | N/C | Not connected |
| J10 | HA07_P | N/C | Not connected |
| J11 | GND    | GND | Ground        |
| J12 | HA11_P | N/C | Not connected |
| J13 | HA11_P | N/C | Not connected |
| J14 | GND    | GND | Ground        |
| J15 | HA14_P | N/C | Not connected |
| J16 | HA14_P | N/C | Not connected |
| J17 | GND    | GND | Ground        |
| J18 | HA18_P | N/C | Not connected |
| J19 | HA18_P | N/C | Not connected |
| J20 | GND    | GND | Ground        |
| J21 | HA22_P | N/C | Not connected |
| J22 | HA22_P | N/C | Not connected |
| J23 | GND    | GND | Ground        |
| J24 | HB01_P | N/C | Not connected |
| J25 | HB01_P | N/C | Not connected |
| J26 | GND    | GND | Ground        |
| J27 | HB07_P | N/C | Not connected |
| J28 | HB07_P | N/C | Not connected |
| J29 | GND    | GND | Ground        |
|     |        |     |               |



| J30 | HB11_P       | N/C | Not connected |
|-----|--------------|-----|---------------|
| J31 | HB11_P       | N/C | Not connected |
| J32 | GND          | GND | Ground        |
| J33 | HB15_P       | N/C | Not connected |
| J34 | HB15_P       | N/C | Not connected |
| J35 | GND          | GND | Ground        |
| J36 | HB18_P       | N/C | Not connected |
| J37 | HB18_P       | N/C | Not connected |
| J38 | GND          | GND | Ground        |
| J39 | VIO_B_M2C_1  | N/C | Not connected |
| J40 | GND          | GND | Ground        |
| K1  | VREF_B_M2C   | N/C | Not connected |
| K2  | GND          | GND | Ground        |
| K3  | GND          | GND | Ground        |
| K4  | CLK2_BIDIR_P | N/C | Not connected |
| K5  | CLK2_BIDIR_P | N/C | Not connected |
| K6  | GND          | GND | Ground        |
| K7  | HA02_P       | N/C | Not connected |
| K8  | HA02_P       | N/C | Not connected |
| K9  | GND          | GND | Ground        |
| K10 | HA06_P       | N/C | Not connected |
| K11 | HA06_P       | N/C | Not connected |
| K12 | GND          | GND | Ground        |
| K13 | HA10_P       | N/C | Not connected |
|     |              |     |               |



| K14 | HA10_P    | N/C | Not connected |
|-----|-----------|-----|---------------|
| K15 | GND       | GND | Ground        |
| K16 | HA17_P_CC | N/C | Not connected |
| K17 | HA17_P_CC | N/C | Not connected |
| K18 | GND       | GND | Ground        |
| K19 | HA21_P    | N/C | Not connected |
| K20 | HA21_P    | N/C | Not connected |
| K21 | GND       | GND | Ground        |
| K22 | HA23_P    | N/C | Not connected |
| K23 | HA23_P    | N/C | Not connected |
| K24 | GND       | GND | Ground        |
| K25 | HB00_P_CC | N/C | Not connected |
| K26 | HB00_P_CC | N/C | Not connected |
| K27 | GND       | GND | Ground        |
| K28 | HB06_P_CC | N/C | Not connected |
| K29 | HB06_P_CC | N/C | Not connected |
| K30 | GND       | GND | Ground        |
| K31 | HB10_P    | N/C | Not connected |
| K32 | HB10_P    | N/C | Not connected |
| K33 | GND       | GND | Ground        |
| K34 | HB14_P    | N/C | Not connected |
| K35 | HB14_P    | N/C | Not connected |
| K36 | GND       | GND | Ground        |
| K37 | HB17_P_CC | N/C | Not connected |
|     |           |     |               |



| I/OO | LID47 D CC  | N/C               | Not some stod                                   |
|------|-------------|-------------------|-------------------------------------------------|
| K38  | HB17_P_CC   | N/C               | Not connected                                   |
| K39  | GND         | GND               | Ground                                          |
| K40  | VIO_B_M2C_2 | N/C               | Not connected                                   |
| G1   | GND         | GND               | Ground                                          |
| G2   | CLK1_M2C_P  | N/C               | Not connected                                   |
| G3   | CLK1_M2C_N  | N/C               | Not connected                                   |
| G4   | GND         | GND               | Ground                                          |
| G5   | GND         | GND               | Ground                                          |
| G6   | LA00_P_CC   | REC_CLK1_P        | Recovered clock positive (LVDS, FPGA to Si5328) |
| G7   | LA00_N_CC   | REC_CLK1_N        | Recovered clock negative (LVDS, FPGA to Si5328) |
| G8   | GND         | GND               | Ground                                          |
| G9   | LA03_P      | SFP0_TX_FAULT_T   | Port 0 SFP TX fault                             |
| G10  | LA03_N      | SFP0_TX_DISABLE_T | Port 0 SFP TX disable (FPGA to SFP)             |
| G11  | GND         | GND               | Ground                                          |
| G12  | LA08_P      | SFP1_RS1_T        | Port 1 SFP Rate Select RS1                      |
| G13  | LA08_N      | SFP1_RS0_T        | Port 1 SFP Rate Select RS0                      |
| G14  | GND         | GND               | Ground                                          |
| G15  | LA12_P      | SFP1_TX_FAULT_T   | Port 1 SFP TX fault                             |
| G16  | LA12_N      | SFP1_TX_DISABLE_T | Port 1 SFP TX disable (FPGA to SFP)             |
| G17  | GND         | GND               | Ground                                          |
| G18  | LA16_P      | SFP2_GRN_LED_T    | Port 2 SFP User bicolor LED Green               |



| G19 | LA16_N     | SFP2_RED_LED_T | Port 2 SFP User bicolor LED Red    |
|-----|------------|----------------|------------------------------------|
| G20 | GND        | GND            | Ground                             |
| G21 | LA20_P     | N/C            | Not connected                      |
| G22 | LA20_N     | N/C            | Not connected                      |
| G23 | GND        | GND            | Ground                             |
| G24 | LA22_P     | N/C            | Not connected                      |
| G25 | LA22_N     | N/C            | Not connected                      |
| G26 | GND        | GND            | Ground                             |
| G27 | LA25_P     | N/C            | Not connected                      |
| G28 | LA25_N     | N/C            | Not connected                      |
| G29 | GND        | GND            | Ground                             |
| G30 | LA29_P     | N/C            | Not connected                      |
| G31 | LA29_N     | N/C            | Not connected                      |
| G32 | GND        | GND            | Ground                             |
| G33 | LA31_P     | N/C            | Not connected                      |
| G34 | LA31_N     | N/C            | Not connected                      |
| G35 | GND        | GND            | Ground                             |
| G36 | LA33_P     | N/C            | Not connected                      |
| G37 | LA33_N     | N/C            | Not connected                      |
| G38 | GND        | GND            | Ground                             |
| G39 | VADJ_3     | VADJ           | Adjustable IO power supply voltage |
| G40 | GND        | GND            | Ground                             |
| H1  | VREF_A_M2C | N/C            | Not connected                      |
|     |            |                |                                    |



| H2  | PRSNT_M2C_L | GND               | Ground                              |
|-----|-------------|-------------------|-------------------------------------|
| НЗ  | GND         | GND               | Ground                              |
| H4  | CLK0_M2C_P  | N/C               | Not connected                       |
| H5  | CLK0_M2C_N  | N/C               | Not connected                       |
| H6  | GND         | GND               | Ground                              |
| H7  | LA02_P      | SFP0_RS1_T        | Port 0 SFP Rate Select RS1          |
| Н8  | LA02_N      | SFP0_RS0_T        | Port 0 SFP Rate Select RS0          |
| H9  | GND         | GND               | Ground                              |
| H10 | LA04_P      | SFP0_LOS_T        | Port 0 SFP Loss of Signal LOS       |
| H11 | LA04_N      | SFP0_MOD_ABS_T    | Port 0 SFP MOD_ABS                  |
| H12 | GND         | GND               | Ground                              |
| H13 | LA07_P      | SFP1_LOS_T        | Port 1 SFP Loss of Signal LOS       |
| H14 | LA07_N      | SFP1_MOD_ABS_T    | Port 1 SFP MOD_ABS                  |
| H15 | GND         | GND               | Ground                              |
| H16 | LA11_P      | PL_I2C_SCL_T      | PL I2C bus clock SCL                |
| H17 | LA11_N      | PL_I2C_SDA_T      | PL I2C bus data SDA                 |
| H18 | GND         | GND               | Ground                              |
| H19 | LA15_P      | SFP2_TX_FAULT_T   | Port 2 SFP TX fault                 |
| H20 | LA15_N      | SFP2_TX_DISABLE_T | Port 2 SFP TX disable (FPGA to SFP) |
| H21 | GND         | GND               | Ground                              |
| H22 | LA19_P      | N/C               | Not connected                       |
| H23 | LA19_N      | N/C               | Not connected                       |
| H24 | GND         | GND               | Ground                              |
| H25 | LA21_P      | N/C               | Not connected                       |
|     |             |                   |                                     |



| opsero.cor | n |
|------------|---|
|------------|---|

| H26 | LA21_N | N/C  | Not connected                      |
|-----|--------|------|------------------------------------|
| H27 | GND    | GND  | Ground                             |
| H28 | LA24_P | N/C  | Not connected                      |
| H29 | LA24_N | N/C  | Not connected                      |
| H30 | GND    | GND  | Ground                             |
| H31 | LA28_P | N/C  | Not connected                      |
| H32 | LA28_N | N/C  | Not connected                      |
| H33 | GND    | GND  | Ground                             |
| H34 | LA30_P | N/C  | Not connected                      |
| H35 | LA30_N | N/C  | Not connected                      |
| H36 | GND    | GND  | Ground                             |
| H37 | LA32_P | N/C  | Not connected                      |
| H38 | LA32_N | N/C  | Not connected                      |
| H39 | GND    | GND  | Ground                             |
| H40 | VADJ_4 | VADJ | Adjustable IO power supply voltage |

# **Specifications**

# **Recommended Operating Conditions**

| SUPPLY VOLTAGE | MIN    | TYP  | MAX    | UNIT |
|----------------|--------|------|--------|------|
| 12 VDC         | +11.4  | +12  | +12.6  | V    |
| 3.3 VDC        | +3.14  | +3.3 | +3.46  | V    |
| VADJ (1.2VDC)  | +1.14  | +1.2 | +1.26  | V    |
| VADJ (1.5VDC)  | +1.425 | +1.5 | +1.575 | V    |



| VADJ (1.8VDC) | +1.71  | +1.8 | +1.89  | V |
|---------------|--------|------|--------|---|
| VADJ (2.5VDC) | +2.375 | +2.5 | +2.625 | V |
| VADJ (3.3VDC) | +3.135 | +3.3 | +3.465 | V |

Notes: \* All VADJ pins must be supplied with the same voltage chosen from one of the following levels: +1.2VDC, +1.5VDC, +1.8VDC, +2.5VDC, +3.3VDC. Note that many carriers have a system controller that will make this choice for you.

## **Power Consumption**

The power consumption of the Quad SFP28 FMC will depend heavily on the SFP+/SFP28 modules being used and the load they are being put under. Power consumption measurements will be added to this section in the near future.

### **Thermal Information**

We have not performed comprehensive thermal testing on the Quad SFP28 FMC, however we recommend that it be operated under ambient temperatures between -40 and 85 degrees C. This advice is based on the recommended ambient operating temperatures of a basket of SFP+/SFP28 modules currently on the market. The active devices on the mezzanine card itself have operating ranges that match or exceed those of typical SFP+/SFP28 modules and are listed in the table below.

| DEVICE                                                                   | MIN | MAX | UNIT |
|--------------------------------------------------------------------------|-----|-----|------|
| TI, 5A Synchronous Buck Converter, TPS565247DRLR                         | -40 | 150 | С    |
| TI, I2C Level translator, <u>TCA9416DTMR</u>                             | -40 | 125 | С    |
| ST, 2K EEPROM, M24C02-FDW6TP                                             | -40 | 85  | С    |
| Skyworks, SyncE Jitter-Attenuating Clock Multiplier, <u>SI5328B-C-GM</u> | -40 | 85  | С    |
| TI, 8-channel I2C Switch with Reset, PCA9548ARGER                        | -40 | 85  | С    |
| TI, Voltage Translator, SN74AVC4T245RSVR                                 | -40 | 85  | С    |
| Abracon, 114.285MHz Crystal, <u>ABM8-166-114.285MHZ-T2</u>               | -40 | 85  | С    |



Components that are not listed in the table above (such as resistors, capacitors) are selected to have minimum operating temperature that is lower than -40 degrees C, and maximum operating temperature that is greater than 85 degrees C.

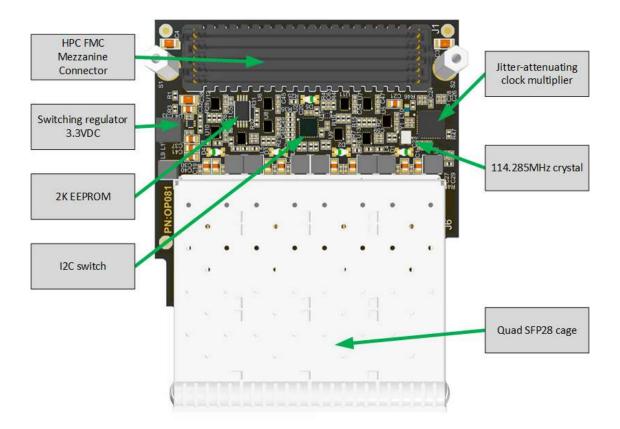
## **I2C (EEPROM) Timing**

The serial EEPROM (part number ST, 2K EEPROM, <u>M24C02-FDW6TP</u>) has a maximum operating clock frequency of 400 kHz (Fast-mode).

## I2C (PL) Timing

The PL I2C bus passes through level translator (<u>TCA9416</u>) and I2C switch (<u>PCA9548</u>). Together they support an I2C clock frequency up to 400kHz (Fast-mode).

| Device                      | Standard-mode<br>100kHz | Fast-mode<br>400kHz | Fast-mode Plus<br>1MHz |
|-----------------------------|-------------------------|---------------------|------------------------|
| Level translator<br>TCA9416 | <b>✓</b>                | ✓                   | ✓                      |
| Switch PCA9548              | ✓                       | ✓                   | ×                      |


## **Certifications**

- RoHS
- CE

# **Detailed Description**

## **Hardware Overview**

The figure below illustrates the various hardware components that are located on the top-side (component side) of the Quad SFP28 FMC.



The main components on the top-side of the mezzanine card are:

- Quad SFP28 cage
- High Pin Count FMC Connector
- 2K EEPROM
- Jitter-attenuating clock multiplier (<u>Si5328</u>)
- 114.285MHz crystal
- I2C switch
- Level translators
- 3.3VDC switching buck regulator

The figure below illustrates the various hardware components that are located on the bottom-side of the mezzanine card.

**Quad SFP28 FMC** FMC Power indicator LFD **POWER** Voltage supply testpoints SFP module test point legend PORT1 PORT2 Bicolor user LEDs SFP module test points ethernetfmc.com QUAD SFP28 FMC PN: OP081

The main components on the bottom-side of the mezzanine card are:

- Bicolor user LEDs
- FMC Power indicator LED
- Test points for 12VDC and 3.3VDC power supplies
- Test points for SFP module I/Os
- Key/legend for SFP I/O test points

## **Quad SFP28 Cage**

The SFP28 cage (Link-PP, SFP28 Quad Cage, <u>LP14CC01000S</u>) can accommodate 4x SFP, SFP+ or SFP28 modules.

## **Jitter-attenuating Clock Multiplier**

The Quad SFP28 FMC features a jitter-attenuating clock multiplier (<u>Skyworks</u>, <u>Si5328</u>), which generates two precision clocks with selectable frequencies ranging from 8kHz to 808MHz. Its wide frequency range and exceptional jitter performance support a variety of applications, including Synchronous Ethernet.



The Si5328 utilizes a 114.285MHz crystal and oscillator circuit to generate frequencies between 8kHz and 808MHz. The clock multiplication ratio can be programmed through an I2C interface. The device also has a clock input, connected to FPGA I/O pins (LA00\_CC\_P/N), which can receive a recovered clock from the FPGA gigabit transceivers. In Synchronous Ethernet applications, jitter attenuation can be applied to the recovered clock, which can then be directed to the clock outputs to drive the gigabit transceivers.

See the Clocks section for more information on the clock system.

#### **EEPROM**

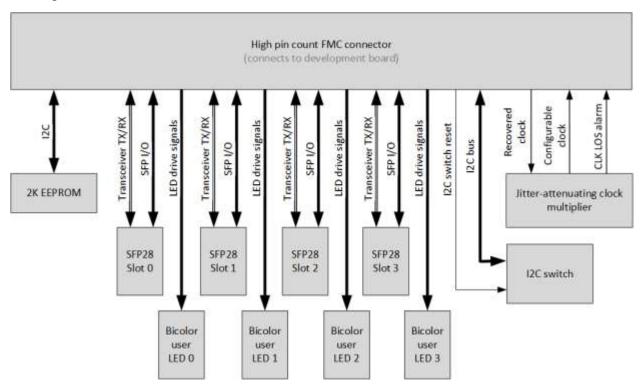
The 2K EEPROM stores IPMI FRU data that can be read by the carrier board and contains the following information:

- Manufacturer name (Opsero Electronic Design Inc.)
- Product name
- Product part number
- Serial number
- Power supply requirements

The FRU data is read by some carrier boards to determine the correct VADJ voltage to apply to the mezzanine card. All Opsero FMC products have their EEPROMs programmed with valid FRU data to allow these carrier boards to correctly power them.

Erasing or writing over the contents of the EEPROM can corrupt the IPMI FRU data making the mezzanine card unusable with carrier boards that require the information. We recommend that you do not use the mezzanine card's EEPROM for non-volatile storage but instead use the storage options provided by the carrier board. If you mistakenly erase or corrupt the contents of the EEPROM, you can reprogram it using the Opsero FMC EEPROM Tool. Read more about the <a href="FMC EEPROM tool">FMC EEPROM tool</a> in the User Guide.

## **High Pin Count FMC Connector**


The Quad SFP28 FMC has a low pin count FMC (FPGA Mezzanine Card) connector for interfacing with an FPGA or SoC development board. The part number of this connector is Samtec, Mezzanine-side High pin count FMC Connector, <u>ASP-134488-01</u>. The pinout of this connector conforms to the VITA 57.1 FPGA Mezzanine Card Standard. For the pinout details, see the <u>Pin configuration</u> section. For more information on the FMC connector and the VITA 57.1 standard, see the <u>Samtec page on VITA 57.1</u>.

### I/O Interfaces

The FMC connector provides power to the Quad SFP28 FMC and also presents the following I/O signals to the FPGA fabric of the development board:

- Gigabit serial links for the 4x SFP28 slots
- SFP I/O signals (FAULT, TX\_DISABLE, MOD, RS0/1, LOS) for the 4x SFP28 slots
- I2C for IPMI EEPROM
- I2C (PL) for SFP28 slots and clock multiplier via an I2C switch
- LVDS recovered clock from the FPGA to drive the clock multiplier
- LVDS configurable clock from the clock multiplier
- Clock loss alarm from the clock multiplier
- Drive signals for the 4x bicolor user LEDs
- Reset signal for the I2C switch

The figure below illustrates the connections to the FMC connector.



The I2C connections from the I2C switch to the slave devices has been left out of the above diagram for clarity. Details on the I2C connections can be found in the I2C Buses section.

The level translators have been left out of the above diagram for clarity. Details can be found in the Level translation section.



#### Level translation

To support a wide range of I/O voltages (VADJ), the Quad SFP28 FMC uses level translators for the SFP I/O signals, the PL I2C bus signals, the I2C switch reset signal, the LED drive signals and the clock loss alarm signal. The table below lists the devices used:

| Device           | Purpose                                                                                         |
|------------------|-------------------------------------------------------------------------------------------------|
| TCA9416          | Level translation of the PL I2C bus.                                                            |
| SN74AVC4T245RSVR | Level translation of SFP I/Os, I2C switch reset signal, LED drive signals and clock loss alarm. |

The gigabit serial links of the SFP28 slots and the reference clocks connect to the gigabit transceivers, which are independent of the VADJ voltage and do not need voltage translation. The <u>recovered clock</u> signal (REC\_CLK1\_P/N) should be configured as an LVDS output in the FPGA and also does not require voltage translation.

#### **Gigabit transceivers**

The data channel between the SFP, SFP+, and SFP28 modules and the FPGA operates over serial gigabit links at speeds of up to 25 Gbps. The Quad SFP28 FMC connects these serial links to gigabit transceivers in the FPGA or SoC on the development board. Each serial link consists of two differential pairs: one for transmission and one for reception. These serial links connect to the first four gigabit transceivers on the FMC connector (DP0-3).

| SFP28 Slot | Signal direction     | FMC gigabit transceiver |
|------------|----------------------|-------------------------|
| 0          | FPGA to link partner | DP0_C2M_P/N             |
|            | Link partner to FPGA | DP0_M2C_P/N             |
| 1          | FPGA to link partner | DP1_C2M_P/N             |
|            | Link partner to FPGA | DP1_M2C_P/N             |
| 2          | FPGA to link partner | DP2_C2M_P/N             |
|            | Link partner to FPGA | DP2_M2C_P/N             |
| 3          | FPGA to link partner | DP3_C2M_P/N             |
|            | Link partner to FPGA | DP3_M2C_P/N             |

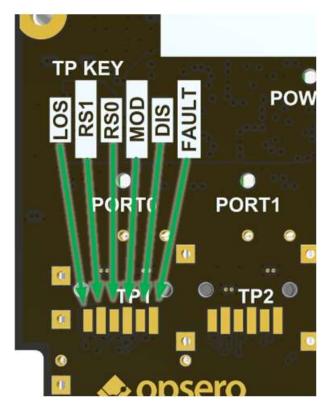


As the serial links connect to gigabit transceivers, they are independent of the VADJ voltage being used and do not need voltage translation.

### SFP I/O Signals

In addition to the high-speed serial link, SFP modules have several I/O signals used for configuration and fault indication. On the Quad SFP28 FMC, these I/O signals are connected through level translators to the FPGA I/O, allowing the FPGA to control and read them. The I/O signals and their functionality are listed in the table below:

| SFP pin | Name       | Direction   | Function                          |
|---------|------------|-------------|-----------------------------------|
| 2       | TX_FAULT   | SFP to FPGA | Indicates transmitter fault       |
| 3       | TX_DISABLE | FPGA to SFP | Disables optical output           |
| 6       | MOD_ABS    | SFP to FPGA | Indicates module absence          |
| 7       | RS0        | FPGA to SFP | Rate select 0                     |
| 8       | RX_LOS     | SFP to FPGA | Indicates receiver loss of signal |
| 9       | RS1        | FPGA to SFP | Rate select 1                     |


The SFP I/O signals connect to the FMC pins listed in the table below:

| Slot | Net Name          | FMC pin |
|------|-------------------|---------|
| 0    | SFP0_TX_DISABLE_T | LA03_P  |
|      | SFP0_TX_FAULT_T   | LA03_N  |
|      | SFP0_LOS_T        | LA04_P  |
|      | SFP0_MOD_ABS_T    | LA04_N  |
|      | SFP0_RS1_T        | LA02_P  |
|      | SFP0_RS0_T        | LA02_N  |
| 1    | SFP1_TX_DISABLE_T | LA12_P  |
|      | SFP1_TX_FAULT_T   | LA12_N  |
|      | SFP1_LOS_T        | LA07_P  |
|      | SFP1_MOD_ABS_T    | LA07_N  |



|   | SFP1_RS1_T        | LA08_P    |
|---|-------------------|-----------|
|   | SFP1_RS0_T        | LA08_N    |
| 2 | SFP2_TX_FAULT_T   | LA15_P    |
|   | SFP2_TX_DISABLE_T | LA15_N    |
|   | SFP2_LOS_T        | LA09_P    |
|   | SFP2_MOD_ABS_T    | LA09_N    |
|   | SFP2_RS1_T        | LA10_P    |
|   | SFP2_RS0_T        | LA10_N    |
| 3 | SFP3_TX_FAULT_T   | LA17_CC_P |
|   | SFP3_TX_DISABLE_T | LA17_CC_N |
|   | SFP3_LOS_T        | LA18_CC_P |
|   | SFP3_MOD_ABS_T    | LA18_CC_N |
|   | SFP3_RS1_T        | LA14_P    |
|   | SFP3_RS0_T        | LA14_N    |

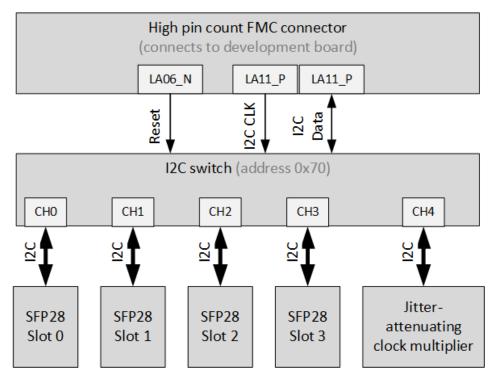
All of the SFP I/O signals are brought out to rectangular test points as a debugging aid. These test points are accessible on the bottom side of the mezzanine card and are illustrated in the bottom labelled image above. For identifying the SFP I/O signals, a key/legend is displayed on the bottom side of the mezzanine card. The signal names in the legend correspond to the test points below them, arranged in the same order and orientation as the legend. Each SFP28 slot has its own set of test points corresponding to these signals. The image below illustrates the matching between the signal names in the key and the test points for slot 0.



#### **I2C Buses**

The Quad SFP28 FMC has two independent I2C buses: the FMC's dedicated I2C bus for the IPMI EEPROM and the PL (programmable logic) I2C bus that connects to all other I2C devices.

#### EEPROM 12C


A 2K EEPROM is located on the FMC card's dedicated I2C bus. The FMC pins of the I2C bus are shown below, and it is up to the user to determine their corresponding connections to the FPGA/MPSoC on the carrier board being used.

| I2C bus signal | FMC pin name | FMC pin number |
|----------------|--------------|----------------|
| SCL (clock)    | SCL          | C30            |
| SDA (data)     | SDA          | C31            |

Be aware that on some carrier boards, the FMC I2C bus passes through an I2C MUX. On some boards it connects to FPGA pins whereas on others it connects to PS pins. If you wish to communicate with the EEPROM or I/O expander, it is necessary to check the schematic drawing of your carrier board to determine the structure of the I2C bus and to which pins it connects.

#### PL I2C

The main I2C bus of the Quad SFP28 FMC is implemented using two FPGA I/O pins (LA11\_P/N) and enables communication between the FPGA, the four SFP28 modules, and the clock multiplier. To avoid I2C address conflicts, an I2C switch (TI, 8-channel I2C Switch with Reset, <a href="PCA9548ARGER">PCA9548ARGER</a>) is used to connect these devices, as identical SFP28 modules may share the same address. The diagram below illustrates the I2C bus connections through the I2C switch:



I2C bus connections

The I2C switch is wired to have I2C address 0x70, and it can be configured to target one of the lower slave devices by specifying the appropriate channel (0-4). The connected slave devices and their channels are listed in the table below:

| I2C Device   | Switch channel | Device I2C address |
|--------------|----------------|--------------------|
| SFP28 Slot 0 | 0              | Module dependent   |
| SFP28 Slot 1 | 1              | Module dependent   |
| SFP28 Slot 2 | 2              | Module dependent   |
| SFP28 Slot 3 | 3              | Module dependent   |

Datasheet: OP081



| Clock multiplier 4 | )x68 |
|--------------------|------|
|--------------------|------|

Note that the I2C address of the SFP28 slots will depend on the SFP/SFP+/SFP28 module that is connected to the slot. Refer to the module datasheet for the I2C address and register details.

The I2C bus signals are connected to the FMC pins listed in the table below:

| Net Name     | Description     | FMC pin |
|--------------|-----------------|---------|
| PL_I2C_SCL_T | I2C clock (SCL) | LA11_P  |
| PL_I2C_SDA_T | I2C data (SDA)  | LA11_N  |

The PL I2C bus signals pass through a level translator to convert the FPGA I/O levels (VADJ) to 3.3VDC levels.

#### **Clock signals**

Refer to the <u>Clocks</u> section for more information about the clock related signals and how they connect to the jitter-attenuating clock multiplier.

#### **Bicolor User LEDs**

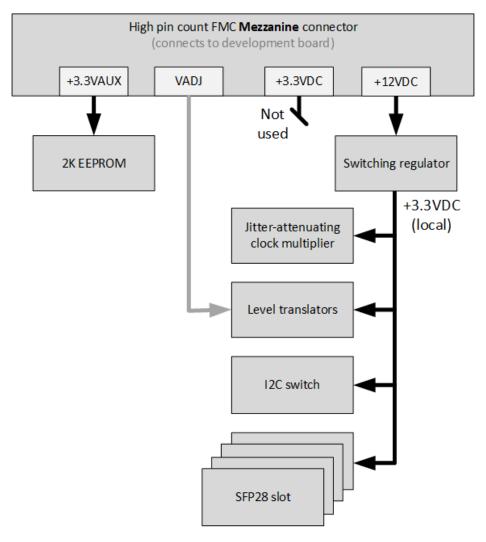
The Quad SFP28 FMC features four bicolor (green/red) LEDs, one for each SFP28 slot, which can be driven by the FPGA and are visible on the <u>bottom side</u> of the mezzanine card. These LEDs provide the user or developer with programmable visible outputs that can be linked to specific signals for monitoring. Examples of such signals for monitoring include the SFP I/Os (FAULT, TX\_DISABLE, MOD, RS0/1, LOS) or other SFP module-specific indicators.

The drive pins for the user LEDs are routed through level translators to convert the FPGA I/O signal levels (VADJ) to 3.3VDC levels for driving the LEDs. The level translators have sufficient output current capacity to drive the LEDs directly.

The bicolor user LEDs connect to the FMC pins listed in the table below:

| Aligned with slot | Net Name       | FMC pin   |
|-------------------|----------------|-----------|
| 0                 | SFP0_GRN_LED_T | LA01_CC_P |
|                   | SFP0_RED_LED_T | LA01_CC_N |
| 1                 | SFP1_GRN_LED_T | LA05_P    |
|                   | SFP1_RED_LED_T | LA05_N    |




| 2 | SFP2_GRN_LED_T | LA16_P |
|---|----------------|--------|
|   | SFP2_RED_LED_T | LA16_N |
| 3 | SFP3_GRN_LED_T | LA13_P |
|   | SFP3_RED_LED_T | LA13_N |

Note that when the green and red signals for a single LED are asserted at the same time, the resulting color is amber.

## **Power Supplies**

All power required by the Quad SFP28 FMC is supplied by the development board through the FMC connector:

- +12VDC
- VADJ: +1.2VDC, +1.5VDC, +1.8VDC, +2.5VDC or +3.3VDC
- +3.3VAUX



#### Power supplies

The FPGA/MPSoC carrier board also supplies a 3.3VDC power supply, however this supply is not used by the Quad SFP28 FMC.

### **12VDC Supply**

The 12VDC supply is the main power source for the mezzanine card. It feeds a buck switching regulator (TI, 5A Synchronous Buck Converter, <u>TPS565247DRLR</u>) that generates 3.3VDC to power to all four SFP28 slots, the clock multiplier, the I2C switch and the level translators.

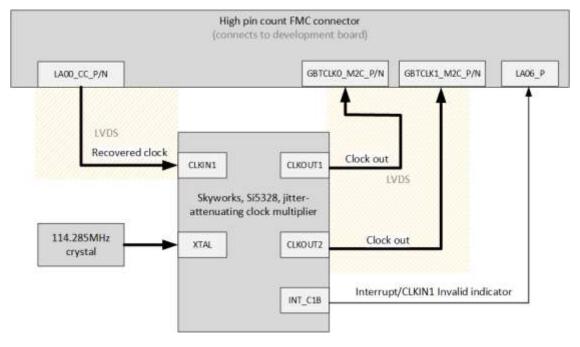
### **VADJ Supply**

The VADJ supply is the FPGA I/O power supply and it determines the voltage levels of the FMC I/Os. On the Quad SFP28 FMC, the VADJ supply powers the level translators that allow the board to be used at any I/O voltage in the range of 1.2VDC to 3.3VDC.

#### 3.3VAUX Supply

The 3.3VAUX supply is used to power the IPMI EEPROM and is independent of the main 3.3VDC supply so that the carrier board can read from the EEPROM without having to power up the entire board.

#### **Power LED and testpoints**


An LED indicates when both the power from the carrier board and the switching regulator are active, and it can be seen in the <u>labelled bottom view</u> of the board above. This LED is connected through a logic buffer to the POWER GOOD signal that is driven by the carrier board and is part of the Vita 57.1 FMC standard. The logic buffer is powered by the 3.3VDC that is generated by the switching regulator.

To aid hardware debug, there is a test point for the 12VDC and 3.3VDC (buck regulator) power supplies on the <u>back side</u> of the Quad SFP28 FMC. When probing these test points, the SFP28 cage can be used as the ground reference as it connects to the system ground.

#### **Clocks**

The clock architecture of the Quad SFP28 FMC is based on the jitter-attenuating clock multiplier (Skyworks, Si5328). This clock multiplier operate in a free-running mode, generating a user-specified frequency ranging from 8kHz to 808MHz, synthesized by a crystal oscillator. In Synchronous Ethernet applications, it can also generate a jitter attenuated clock that is synchronous with link partner's clock.

The figure below illustrates the clock connections on the Quad SFP28 FMC.



#### Clocks

### **Clock outputs**

The Si5328 has two output clocks, both connected to the FMC connector's GT reference clock inputs. These clocks are divided down separately from a common source, allowing them to be programmed to different frequencies while remaining synchronous.

The clock outputs are connected to the FMC pins listed in the table below:

| Si5328 pin | I/O standard | FMC pin         |
|------------|--------------|-----------------|
| CLKOUT1    | LVDS         | GBTCLK0_M2C_P/N |
| CLKOUT2    | LVDS         | GBTCLK1_M2C_P/N |

## **Clock input**

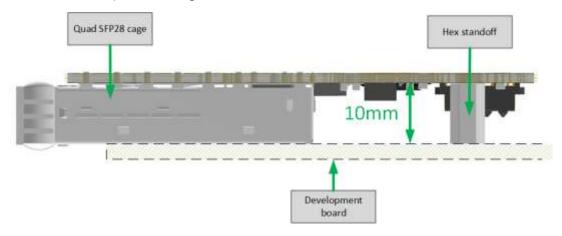
The Si5328 has two input clocks, but only one is connected on the Quad SFP28 FMC. This clock input is connected to the FMC pins LA00\_CC\_P/N, enabling the FPGA to forward a recovered clock from the gigabit transceivers. The Si5328 can perform jitter attenuation on the recovered clock and forward the resulting clock to its outputs. This feature allows the Quad SFP28 FMC to be used in Synchronous Ethernet applications.

The clock inputs are connected to the FMC pins listed in the table below:

Si5328 pin I/O standard FMC pin



CLKIN1 LVDS LA00\_CC\_P/N

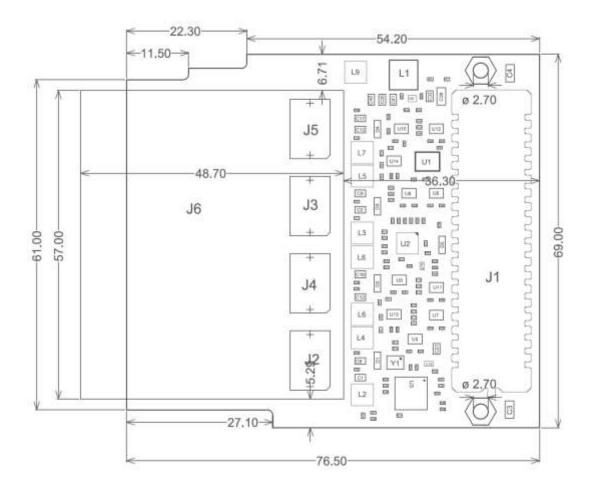

#### Clock loss alarm

The Si5328 has a logic output INT\_C1B that indicates loss-of-signal on the input clock CLKIN1 (the recovered clock). The signal goes HIGH when the device detects missing pulses on the input clock. The clock loss alarm passes through level translation and connects to FMC pin LA06\_P.

# **Mechanical Information**

# **Height Profile**

The figure below illustrates the height profile of the Quad SFP28 FMC. All of the components on the Quad SFP28 FMC Max fit within the 10mm gap between the FMC card and the development board. The quad SFP28 cage (Link-PP, SFP28 Quad Cage, LP14CC01000S) has a height of less than 10mm.




Quad SFP28 FMC height profile (view from side)

## **Dimensions**

The mechanical dimensions of the Quad SFP28 FMC are illustrated in the figure below. All dimensions are in millimeters (mm).

The assembly drawings are also available as PDF files that you can download at the provided links.



#### Quad SFP28 FMC mechanical drawing

Quad SFP28 FMC Rev-A Assembly Drawing PDF

## 3D Model

The 3D model of the board is available as a STEP file at the links below:

Quad SFP28 FMC Rev-A 3D STEP model

# Mezzanine fastening hardware

For mechanical fastening of the mezzanine card to the carrier board, the Ethernet FMC comes with 2x hex standoffs. We **highly recommend** using the machine screws on each of these standoffs to fix the mezzanine card to the carrier board. If the fastening screws are misplaced, they can be replaced by the ones listed below, or equivalents.

The hex standoff and machine screw part numbers are listed below:



Hex standoff, Thread M2.5 x 0.45, Brass, Board-to-board length 10mm

Part number: V6516C Manufacturer: Assmann

Machine screw, Thread M2.5 x 0.45, Length (below head) 4mm, Stainless steel,

Phillips head

Part number: 90116A105 Supplier: McMaster-Carr

# **Getting Started**

# Minimum setup

To develop with the Quad SFP28 FMC, we recommend you start by getting your hands on the minimum hardware and software requirements:

- 1. An FPGA or MPSoC development board make sure that it is on our list of compatible boards.
- 2. A Quad SFP28 FMC to match the dev board.
- 3. A license for the Xilinx TEMAC IP (unless you want to use something else, see below section on <u>getting a license</u>).
- 4. Build and run one of our example designs.

**Support for other devices:** Note that all of our example designs were developed using Xilinx software tools and the Xilinx AXI Ethernet Subsystem IP. Although it is possible to use the Quad SFP28 FMC with FPGA devices from other chip makers such as Intel/Altera, our example designs will not work on these devices and our ability to provide technical support for these other devices is limited at the current time.

## Getting a license for the Xilinx Tri-mode Ethernet MAC

#### When do I need a license?

- You want to use the example designs provided on this website that are based on the Xilinx soft TEMAC. (which is all of them at this point in time)
- You want to create your own designs that are based on the Xilinx soft TEMAC.
  Using the Xilinx soft TEMAC can save you a considerable amount of time
  because you benefit from all the Xilinx support including example designs,
  documentation and drivers.

#### When do I NOT need a license?

 You want to create your own designs that are **not** based on the Xilinx soft TEMAC.

Your options: Design your own TEMAC, purchase a 3rd party TEMAC, or use the open source TEMAC on opencores.org.

 You are using the Virtex®-4 FX or Virtex-5 LXT/SXT, which contain hard TEMACs.

AND your device contains a sufficient number of them to support your application. If you need 4 ports, you must have 4 hard TEMACs in your device.

#### License types

#### Evaluation license

An evaluation license allows you to do everything you can do with the fully licensed IP core, including configuration, simulation and bitstream generation. You can also test the IP core on hardware, however it will cease to function after a certain period of time (typically 8 hours).

To obtain an evaluation license, visit <u>Xilinx TEMAC Evaluation</u> and click on the link <u>Generate Soft TEMAC License Key</u>. You will have to log into the <u>Xilinx website</u>, select the TEMAC evaluation license and click "Generate license". Xilinx will then send you the license by email with instructions for how to install it.

#### Full license

The full license can be purchased as a <u>"site" or "project" license</u>. The project license limits use of the IP core to one project, generally meaning one bitstream, or one printed circuit board. The site license can be used on an unlimited number of projects however is limited to a single company site.

- Project license part number: EF-DI-TEMAC-PROJ
- Site license part number: EF-DI-TEMAC-SITE

Both licenses can be purchased from Xilinx <u>here</u>. Alternatively you can search the part numbers on <u>Avnet</u> and <u>Digikey</u> websites.

# **Compatible Boards**

This section of the documentation aims to list all of the development boards for which compatibility with the Quad SFP28 FMC has been checked, and to list constraints and any notes concerning special requirements or limitations with the board.

## List of boards

The following development boards have been verified compatible with the Quad SFP28 FMC. For more detailed information regarding compatibility with a particular

development board, including the availability of an example design, click on the name of the board in the table below.

Note that we are still working on the reference designs for these boards and we expect them to be available by September 2024.

### **Series-7 boards**

| Carrier                                                       | FMC  | Compatible | Ref<br>design | Supported Ports |
|---------------------------------------------------------------|------|------------|---------------|-----------------|
| AMD Xilinx KC705 Kintex-7 Development board                   | HPC  | ✓          | Coming soon   | 4               |
| AMD Xilinx KC705 Kintex-7 Development board                   | LPC  | ✓          | No            | 1 1             |
| AMD Xilinx <u>VC707</u> Virtex-7<br>Development board         | HPC1 | ✓          | Coming soon   | 4               |
| AMD Xilinx <u>VC707</u> Virtex-7<br>Development board         | HPC2 | ✓          | Coming soon   | 4               |
| AMD Xilinx VC709 Virtex-7 Development board                   | HPC  | ✓          | Coming soon   | 4               |
| AMD Xilinx ZC706 Zynq-7000<br>Development board               | HPC  | ✓          | Coming soon   | 4               |
| AMD Xilinx ZC706 Zynq-7000<br>Development board               | LPC  | ✓          | No            | 1 2             |
| Avnet PicoZed FMC Carrier Card V2 Zynq-7000 Development Board | LPC  | ✓          | No            | 1 <sup>3</sup>  |

#### **UltraScale boards**

| rrier FMC | Compatible | Ref<br>design | Supported<br>Ports |
|-----------|------------|---------------|--------------------|
|-----------|------------|---------------|--------------------|

<sup>&</sup>lt;sup>1</sup> LPC connectors can only support 1-lane PCIe

<sup>&</sup>lt;sup>2</sup> LPC connectors can only support 1-lane PCIe

<sup>&</sup>lt;sup>3</sup> LPC connectors can only support 1-lane PCIe

**Datasheet: OP081** 



opsero.com

| AMD Xilinx KCU105 Kintex UltraScale Development board           | HPC  | ✓ | Coming soon | 4   |
|-----------------------------------------------------------------|------|---|-------------|-----|
| AMD Xilinx KCU105 Kintex UltraScale Development board           | LPC  | ✓ | No          | 1 4 |
| AMD Xilinx <u>VCU108</u> Virtex<br>UltraScale Development board | HPC0 | ✓ | Coming soon | 4   |
| AMD Xilinx <u>VCU108</u> Virtex<br>UltraScale Development board | HPC1 | ✓ | Coming soon | 4   |

# Zynq Ultrascale+ boards

| Carrier                                                                | FMC  | Compatible | Ref<br>design | Supported<br>Ports |
|------------------------------------------------------------------------|------|------------|---------------|--------------------|
| AMD Xilinx ZCU104 Zynq<br>UltraScale+ Development board                | LPC  | ✓          | No            | 1 <sup>5</sup>     |
| AMD Xilinx <u>ZCU102</u> Zynq<br>UltraScale+ Development board         | HPC0 | <b>✓</b>   | Coming soon   | 4                  |
| AMD Xilinx ZCU102 Zynq<br>UltraScale+ Development board                | HPC1 | ✓          | Coming soon   | 4                  |
| AMD Xilinx <u>ZCU106</u> Zynq<br>UltraScale+ Development board         | HPC0 | ✓          | Coming soon   | 4                  |
| AMD Xilinx ZCU106 Zynq<br>UltraScale+ Development board                | HPC1 | ✓          | No            | 1                  |
| AMD Xilinx ZCU111 Zynq UltraScale+ Development board                   | FMC+ | ✓          | Coming soon   | 4                  |
| AMD Xilinx ZCU208 Zynq<br>UltraScale+ Development board                | FMC+ | ✓          | Coming soon   | 4                  |
| Avnet <u>UltraZed EV Carrier</u> Zynq<br>UltraScale+ Development board | HPC  | ✓          | Coming soon   | 4                  |

<sup>&</sup>lt;sup>4</sup> LPC connectors can only support 1-lane PCIe

<sup>&</sup>lt;sup>5</sup> LPC connectors can only support 1-lane PCIe



#### **Ultrascale+ boards**

| Carrier                                                | FMC  | Compatible         | Ref<br>design | Supported<br>Ports |
|--------------------------------------------------------|------|--------------------|---------------|--------------------|
| AMD Xilinx VCU118 Virtex UltraScale+ Development board | HPC  | ★ Use FMC+ instead | No            | Not<br>supported   |
| AMD Xilinx VCU118 Virtex UltraScale+ Development board | FMC+ | ❖                  | Coming soon   | 4                  |

#### **Versal boards**

| Carrier                                                           | FMC   | Compatible | Ref<br>design | Supported Ports |
|-------------------------------------------------------------------|-------|------------|---------------|-----------------|
| AMD Xilinx VCK190 Versal Al<br>Core Development board             | FMC+1 | ✓          | Coming soon   | 4               |
| AMD Xilinx <u>VCK190</u> Versal AI<br>Core Development board      | FMC+2 | ✓          | Coming soon   | 4               |
| AMD Xilinx <u>VMK180</u> Versal Prime<br>Series Development board | FMC+1 | ✓          | Coming soon   | 4               |
| AMD Xilinx <u>VMK180</u> Versal Prime<br>Series Development board | FMC+2 | ✓          | Coming soon   | 4               |
| AMD Xilinx <u>VPK120</u> Versal Premium Series Development board  | FMC+  | ✓          | Coming soon   | 4               |

# **Compatibility requirements**

If you need to determine the compatibility of a development board that is not listed here, or you are designing a carrier board to mate with the Quad SFP28 FMC, please check your board against the list of requirements below.



#### **VADJ**

The development board must have the ability to supply a VADJ voltage between 1.2VDC and 3.3VDC. The Quad SFP28 FMC has an EEPROM containing IPMI data to be used by a power management device. If the development board has such a power management device, an appropriate VADJ voltage will be applied automatically on power-up. Note that some development boards require the VADJ voltage to be configured by a DIP switch or jumper placement.

#### Gigabit transceivers

The FPGA or MPSoC device must have gigabit transceivers and they must be routed to the FMC connector. The SFP28 slots 0-3 are routed to transceivers DP0-DP3 respectively and these transceivers must be connected to the FPGA for the SFP28 slots to work.

| Slot | Signal direction     | FMC Pin | FMC pin name |
|------|----------------------|---------|--------------|
| 0    | Link partner to FPGA | C6/C7   | DP0_M2C_P/N  |
|      | FPGA to Link partner | C2/C3   | DP0_C2M_P/N  |
| 1    | Link partner to FPGA | A2/A3   | DP1_M2C_P/N  |
|      | FPGA to Link partner | A22/A23 | DP1_C2M_P/N  |
| 2    | Link partner to FPGA | A6/A7   | DP2_M2C_P/N  |
|      | FPGA to Link partner | A26/A27 | DP2_C2M_P/N  |
| 3    | Link partner to FPGA | A10/A11 | DP3_M2C_P/N  |
|      | FPGA to Link partner | A30/A31 | DP3_C2M_P/N  |

Note that low pin count (LPC) FMC connectors only have one possible GT connection (DP0). For this reason, carrier boards with LPC FMC connectors can only support a single SFP28 slot (slot 0).

At least one of the GT clock references (FMC pins GBTCLK0\_M2C\_P/N and GBTCLK1\_M2C\_P/N) should be connected to one of the GT reference clock inputs of the quad to which DP0-3 connect, or an adjacent quad.

## Required I/O

The following FMC pins **must** be connected to the FPGA as they provide critical I/O to the mezzanine card.



| FMC Pin | FMC name  | Net               | Description                     |
|---------|-----------|-------------------|---------------------------------|
| H16     | LA11_P    | PL_I2C_SCL_T      | PL I2C bus clock (SCL)          |
| H17     | LA11_N    | PL_I2C_SDA_T      | PL I2C bus data (SDA)           |
| G9      | LA03_P    | SFP0_TX_DISABLE_T | Slot 0: Disables optical output |
| G15     | LA12_P    | SFP1_TX_DISABLE_T | Slot 1: Disables optical output |
| H20     | LA15_N    | SFP2_TX_DISABLE_T | Slot 2: Disables optical output |
| D21     | LA17_CC_N | SFP3_TX_DISABLE_T | Slot 3: Disables optical output |
| H7      | LA02_P    | SFP0_RS1_T        | Slot 0: Rate select 1           |
| H8      | LA02_N    | SFP0_RS0_T        | Slot 0: Rate select 0           |
| G12     | LA08_P    | SFP1_RS1_T        | Slot 1: Rate select 1           |
| G13     | LA08_N    | SFP1_RS0_T        | Slot 1: Rate select 0           |
| C14     | LA10_P    | SFP2_RS1_T        | Slot 2: Rate select 1           |
| C15     | LA10_N    | SFP2_RS0_T        | Slot 2: Rate select 0           |
| C18     | LA14_P    | SFP3_RS1_T        | Slot 3: Rate select 1           |
| C19     | LA14_N    | SFP3_RS0_T        | Slot 3: Rate select 0           |

### Featured I/O

The following FMC pins should ideally be connected to the FPGA as they provide extra functionality to the mezzanine card. These pins are not critical to the operation of the mezzanine card; it can operate without them if they are not connected on the carrier board.

| FMC<br>Pin | FMC name | Net             | Description                               |
|------------|----------|-----------------|-------------------------------------------|
| G10        | LA03_N   | SFP0_TX_FAULT_T | Slot 0: Indicates transmitter fault       |
| H10        | LA04_P   | SFP0_LOS_T      | Slot 0: Indicates receiver loss of signal |
| H11        | LA04_N   | SFP0_MOD_ABS_T  | Slot 0: Indicates module absence (Slot 0) |





| G16 | LA12_N    | SFP1_TX_FAULT_T | Slot 1: Indicates transmitter fault       |
|-----|-----------|-----------------|-------------------------------------------|
| H13 | LA07_P    | SFP1_LOS_T      | Slot 1: Indicates receiver loss of signal |
| H14 | LA07_N    | SFP1_MOD_ABS_T  | Slot 1: Indicates module absence (Slot 0) |
| H19 | LA15_P    | SFP2_TX_FAULT_T | Slot 2: Indicates transmitter fault       |
| D14 | LA09_P    | SFP2_LOS_T      | Slot 2: Indicates receiver loss of signal |
| D15 | LA09_N    | SFP2_MOD_ABS_T  | Slot 2: Indicates module absence (Slot 0) |
| D20 | LA17_CC_P | SFP3_TX_FAULT_T | Slot 3: Indicates transmitter fault       |
| C22 | LA18_CC_P | SFP3_LOS_T      | Slot 3: Indicates receiver loss of signal |
| C23 | LA18_CC_N | SFP3_MOD_ABS_T  | Slot 3: Indicates module absence (Slot 0) |
| D8  | LA01_CC_P | SFP0_GRN_LED_T  | Slot 0: Green LED enable                  |
| D9  | LA01_CC_N | SFP0_RED_LED_T  | Slot 0: Red LED enable                    |
| D11 | LA05_P    | SFP1_GRN_LED_T  | Slot 1: Green LED enable                  |
| D12 | LA05_N    | SFP1_RED_LED_T  | Slot 1: Red LED enable                    |
| G18 | LA16_P    | SFP2_GRN_LED_T  | Slot 2: Green LED enable                  |
| G19 | LA16_N    | SFP2_RED_LED_T  | Slot 2: Red LED enable                    |
| D17 | LA13_P    | SFP3_GRN_LED_T  | Slot 3: Green LED enable                  |
| D18 | LA13_N    | SFP3_RED_LED_T  | Slot 3: Red LED enable                    |
| C10 | LA06_P    | CLK_LOS_ALARM   | Clock loss alarm (recovered clock)        |
| C11 | LA06_N    | I2C_SW_RST_N_T  | I2C switch reset (active low)             |





# **Example Designs**

We are currently working on the example designs for Quad SFP28 FMC and we expect them to be released by September 2024.

# **Programming Guide**

This section provides the details of the programming requirements to operate the Ethernet FMC hardware and customise functionality.

## SFP I/Os

Some of the SFP I/Os must be driven by the FPGA to fixed levels in order to configure the SFP/SPF+/SFP28 modules for normal operation.

## **Optical output**

SFP module input TX\_DISABLE allows the FPGA to disable the optical output if so desired. In normal operation however, this input should be driven LOW to **enable** optical output.

| Net               | Description                     | FMC pin   | Value for normal operation |
|-------------------|---------------------------------|-----------|----------------------------|
| SFP0_TX_DISABLE_T | Slot 0: Disables optical output | LA03_P    | LOW (0)                    |
| SFP1_TX_DISABLE_T | Slot 1: Disables optical output | LA12_P    | LOW (0)                    |
| SFP2_TX_DISABLE_T | Slot 2: Disables optical output | LA15_N    | LOW (0)                    |
| SFP3_TX_DISABLE_T | Slot 3: Disables optical output | LA17_CC_N | LOW (0)                    |

Note that the pins in the above table must not be left floating. If your SFP modules do not require these signals to be driven, we recommend that you drive them LOW to ensure that the inputs to the level translators are not left floating.

#### Rate select

The SFP module inputs, RS0 and RS1, generally allow the FPGA to configure the module for different link speeds or performance levels. However, their specific function may vary by vendor. Please refer to the datasheet of your SFP/SFP+/SFP28 module for detailed information on configuring these pins. Note that some modules do not use these pins at all.

If you are unsure what levels to apply to RS0 and RS1, or if your modules do not require them, we recommend driving the signals to the constant values shown in the table below.

| Net        | Description           | FMC pin | Value   |
|------------|-----------------------|---------|---------|
| SFP0_RS1_T | Slot 0: Rate select 1 | LA02_P  | LOW (0) |
| SFP0_RS0_T | Slot 0: Rate select 0 | LA02_N  | LOW (0) |
| SFP1_RS1_T | Slot 1: Rate select 1 | LA08_P  | LOW (0) |
| SFP1_RS0_T | Slot 1: Rate select 0 | LA08_N  | LOW (0) |
| SFP2_RS1_T | Slot 2: Rate select 1 | LA10_P  | LOW (0) |
| SFP2_RS0_T | Slot 2: Rate select 0 | LA10_N  | LOW (0) |
| SFP3_RS1_T | Slot 3: Rate select 1 | LA14_P  | LOW (0) |
| SFP3_RS0_T | Slot 3: Rate select 0 | LA14_N  | LOW (0) |

Note that the pins in the above table must not be left floating. If your SFP modules do not require these signals to be driven, we recommend that you drive them LOW to ensure that the inputs to the level translators are not left floating.

## **I2C Switch**

The I2C switch (<u>PCA9548</u>) is connected to the PS I2C bus and allows the FPGA to communicate with the SFP/SFP+/SFP28 modules and the jitter-attenuating clock multiplier. The I2C switch has address 0x70.

| <b>A6</b> | <b>A5</b> | <b>A4</b> | А3 | <b>A2</b> | <b>A</b> 1 | Α0 | Hexadecimal |
|-----------|-----------|-----------|----|-----------|------------|----|-------------|
| 1         | 1         | 1         | 0  | 0         | 0          | 0  | 0x70        |

The PS I2C bus signals are connected to the FMC pins listed in the table below:



| Net Name     | Description     | FMC pin |
|--------------|-----------------|---------|
| PL_I2C_SCL_T | I2C clock (SCL) | LA11_P  |
| PL_I2C_SDA_T | I2C data (SDA)  | LA11_N  |

The channels of the I2C switch are connected as shown in the table below:

| I2C Device       | Switch channel | Device I2C address |
|------------------|----------------|--------------------|
| SFP28 Slot 0     | 0              | Module dependent   |
| SFP28 Slot 1     | 1              | Module dependent   |
| SFP28 Slot 2     | 2              | Module dependent   |
| SFP28 Slot 3     | 3              | Module dependent   |
| Clock multiplier | 4              | 0x68               |

Note that the I2C addresses of the SFP/SFP+/SFP28 modules are dependent on the specific module used. Refer to the module datasheet for this information.

# **Clock multiplier**

The jitter-attenuating clock multiplier (<u>Skyworks, Si5328</u>) must be configured via the PS I2C bus to enable appropriate clocks for the SFP/SFP+/SFP28 modules used. The Si5328 has the I2C address 0x68.

| <b>A6</b> | <b>A5</b> | <b>A4</b> | А3 | <b>A2</b> | <b>A1</b> | A0 | Hexadecimal |
|-----------|-----------|-----------|----|-----------|-----------|----|-------------|
| 1         | 1         | 0         | 1  | 0         | 0         | 0  | 0x68        |

Refer to the <u>Si5328 datasheet</u> for detailed information on the device registers and how to configure the clock outputs.

## **EEPROM**

The <u>2K EEPROM</u> is intended to store information that identifies the mezzanine card and also specifies the power supplies required by the card. This information is typically read by the system power management on the carrier board when it is powered up. In typical user applications, it should not be necessary to read the data on the EEPROM, and we highly recommend against writing to the EEPROM. Nevertheless, if you wish to access the EEPROM, it can be read and written to at the I2C address 0x50.



 A6
 A5
 A4
 A3
 A2
 A1
 A0
 Hexadecimal

 1
 0
 1
 0
 0
 0
 0
 0x50

The EEPROM sits on the FMC card's dedicated I2C bus. The FMC pins of the EEPROM's I2C bus are shown below, and it is up to the user to determine their corresponding connections to the FPGA/MPSoC on the carrier board being used.

| I2C bus signal | FMC pin name | FMC pin number |
|----------------|--------------|----------------|
| SCL (clock)    | SCL          | C30            |
| SDA (data)     | SDA          | C31            |

Be aware that on some carrier boards, the FMC I2C bus passes through an I2C MUX. On some boards it connects to FPGA pins whereas on others it connects to PS pins. If you wish to communicate with the EEPROM, it is necessary to check the schematic drawing of your carrier board to determine the structure of the I2C bus and to which pins it connects.

#### **FMC EEPROM Tool**

The Opsero FMC EEPROM Tool can be used to verify, reprogram or update the EEPROM contents of Opsero FMC products using an FPGA or MPSoC board such as the ZCU102 or VCU118 board.

Only use this tool with Opsero FMC products. The use of this tool with FMCs from other manufacturers is strictly prohibited and may result in damage to the FMC or to the carrier board.

#### Supported boards

The tool currently supports the following FPGA/MPSoC boards. You must have at least one of these boards in order to use the tool.

- KC705
- KCU105
- VCU118
- VCK190
- VMK180
- ZedBoard
- ZCU102 Rev1.0 and Rev1.1
- ZCU104
- ZCU106

#### Download

The tool can be downloaded at the link below:

#### Opsero FMC EEPROM Tool v1.5

The zip file contains a boot file (bitstream or BOOT.bin) for each of the supported boards.

#### Usage instructions

To run the tool, follow these steps:

- Plug the FMC card you wish to reprogram into one of the FMC connectors of your FPGA/MPSoC board. The tool is designed to probe all of the FMC connectors on the FPGA/MPSoC board.
- 2. If you are using the ZedBoard, be sure to set the VADJ jumper setting to 1.8V. If you are using the KC705, be sure that your FMC card can support a VADJ of 2.5V, which is the default setting of that board.
- 3. Connect the UART of your FPGA/MPSoC board to a PC.
- 4. For Zynq and Zynq MP boards, a BOOT.bin file is provided. Copy this file to your board's SD card and configure it to boot from SD card. Then plug the SD card back into the board and power it up.
- 5. For FPGA boards, a bitstream is provided with an embedded ELF file. Power up your FPGA/MPSoC board and then download the bitstream to the FPGA board using the Vivado Hardware Manager tool.
- 6. Open a terminal program such as Putty and connect to the serial port of your FPGA/MPSoC board. If you see nothing in the terminal window, press ENTER to redisplay the menu.
- 7. Use the menu options to do the following:
  - Program the EEPROM (p)

You will be asked to select the FMC product from a list, and also to enter the product's serial number. Note that entering incorrect information here can lead to your FMC card being damaged by a VADJ voltage that is greater than it's true rating. If you are not sure about the product to select here, please contact Opsero first.

# **Board Revision History**

## Rev A

First board release

# References

### **Board Files**

#### Rev-A

- Quad SFP28 FMC Rev-A Schematics PDF
- Quad SFP28 FMC Rev-A Assembly Drawing PDF
- Quad SFP28 FMC Rev-A 3D STEP model

### **Part Datasheets**

Use the links below to access the datasheets of the significant parts on the mezzanine card.

- Samtec, Mezzanine-side High pin count FMC Connector, <u>ASP-134488-01</u>
- Link-PP, SFP28 20-pin Connector, <u>LP11C000003</u>
- Link-PP, SFP28 Quad Cage, <u>LP14CC01000S</u>
- Skyworks, SyncE Jitter-Attenuating Clock Multiplier, <u>SI5328B-C-GM</u>
- TI, 5A Synchronous Buck Converter, <u>TPS565247DRLR</u>
- TI, 8-channel I2C Switch with Reset, <u>PCA9548ARGER</u>
- TI, Voltage Translator, <u>SN74AVC4T245RSVR</u>
- TI, I2C Level translator, TCA9416DTMR
- Abracon, 114.285MHz Crystal, <u>ABM8-166-114.285MHZ-T2</u>



# **Revision History**

| Date       | Version | Description          |
|------------|---------|----------------------|
| 2024-07-29 | 1.0     | Initial PDF release. |

# **Notice of Disclaimer**

THE INFORMATION PROVIDED HEREUNDER INCLUDING TECHNICAL AND RELIABILITY DATA, DATA SHEETS, EXAMPLE AND REFERENCE DESIGNS, APPLICATIONS, DESIGN ADVICE, SAFETY INFORMATION, AND OTHER RESOURCES IS PROVIDED "AS IS" AND WITH ALL FAULTS. OPSERO DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS AND IMPLIED, OR STATUTORY, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Opsero products. You are solely responsible for selecting the appropriate Opsero products for your application, designing, validating and testing your application, and ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Opsero grants you permission to use these resources only for development of an application that uses the Opsero products described in the resource. You may not reproduce, modify, distribute or publicly display these resources without prior written consent. Opsero disclaims responsibility for, and you will fully indemnify Opsero and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Opsero's products are provided subject to Opsero's Terms of Sale which can be viewed at <a href="https://opsero.com/legal">https://opsero.com/legal</a>. Opsero products are not intended to be fail-safe and are not to be used in applications requiring fail-safe performance. You assume sole risk and liability for use of Opsero products in such applications.