1200 V, 50 A Fast Field-Stop IGBT 7 with SiC Diode

APT50GH120BSC20

Product Overview

1200 V, 50 A Fast Field-Stop IGBT with co-packaged, anti-parallel SiC diode, TO-247

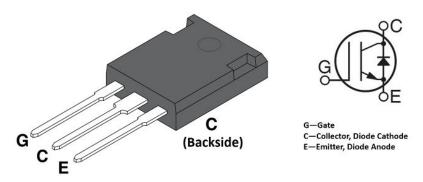


Table 1. Ordering Information

Catalog Part Number (CPN)	Package	Packing Media	Qualification
APT50GH120BSC20	TO-247	Tube	Industrial

Features

- Low conduction loss and saturation voltage
- Fast switching
- · Low gate charge
- · Ultrafast tail current shutoff
- No reverse recovery
- · Reverse-bias safe operating area (RBSOA) rated
- Easy to parallel
- · RoHS compliant
- Zero E_{on} switching loss from co-packaged, anti-parallel diode

1. Device Specifications: IGBT

This section shows the specifications of this device.

1.1. Absolute Maximum Ratings

The following table shows the absolute maximum ratings of this device. $T_C = 25$ °C unless otherwise specified.

Table 1-1. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V_{CES}	Collector-emitter voltage	1200	٧
V_{GE}	Gate-emitter voltage	±20	
I _{C1}	Continuous collector current ¹ (T _C = 25 °C)	119	Α
I _{C2}	Continuous collector current ¹ (T _C = 100 °C)	73	
I _{CM}	Pulsed collector current ² (T _C = 175 °C)	200	
RBSOA	Reverse-bias safe operating area (T _J = 150 °C, 960 V)	200	А
P_{D}	Total power dissipation	492	W

Notes:

- 1. Limited by maximum lead temperature.
- 2. Repetitive rating: Pulse width and case temperature are limited by the maximum junction temperature.

1.2. Thermal and Mechanical Characteristics

The following table shows the thermal and mechanical characteristics of this device.

Table 1-2. Thermal and Mechanical Characteristics

Symbol	Characteristic	Min.	Тур.	Max.	Unit
$R_{\Theta JC}$	Junction-to-case thermal resistance (IGBT)		0.21	0.31	°C/W
	Junction-to-case thermal resistance (diode)		0.65	0.95	
T _J , T _{STG}	Operating and storage junction temperature	-40		175	°C
T_{L}	Lead temperature for 10 seconds			300	
τ_{M}	Mounting torque, M3 screw for heat sink attachment (requires 1, not included)		0.8		N·m
Wt	Package weight		6.2		g

1.3. Electrical Performance

The following table shows the static characteristics of this device. T_C = 25 °C unless otherwise specified.

Table 1-3. Static Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_{C} = 0.8 \text{ mA}$	4.7	5.5	6.2	٧
V _{CE(ON)}	Collector-emitter on voltage	$V_{GE} = 15 \text{ V}, I_{C} = 50 \text{ A}$		1.7	2.15	
		V _{GE} = 15 V, I _C = 50 A, T _J = 175 °C		2.1		
I _{CES}	Collector cut-off current ¹	V _{CE} = 1200 V, V _{GE} = 0 V			240	μΑ
		V _{CE} = 1200 V, V _{GE} = 0 V, T _J = 175 °C		3600		
I _{GES}	Gate-emitter leakage current	V _{GE} = ±20 V			±100	nA

Note:

1. I_{CES} includes both IGBT and diode leakages.

The following table shows the dynamic characteristics of this device. $T_C = 25$ °C unless otherwise specified.

Table 1-4. Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance	$V_{GE} = 0 \text{ V}, V_{CE} = 25 \text{ V}, f = 200 \text{ kHz}$		6885		pF
C _{res}	Reverse transfer capacitance			36		
C _{oes}	Output capacitance			95		
V_{GEP}	Gate-to-emitter plateau voltage	V_{GE} = 15 V, V_{CE} = 960 V, I_{C} = 50 A		7.5		٧
Q_{G}	Total gate charge ¹			375		nC
Q _{GE}	Gate-emitter charge			46		
Q_{GC}	Gate-collector ("Miller") charge			143		
RBSOA	Reverse-bias safe operating area	T_J = 175 °C, R_G = 23 Ω, V_{GE} = 15 V, V_{CE} = 800 V, L = 100 μH	200			A
t _{d(on)}	Turn-on delay time	$V_{CC} = 800 \text{ V}, V_{GE} = 15 \text{ V}, I_{C} = 50 \text{ A},$		22		ns
t _r	Current rise time	$R_G = 5 \Omega$, $T_J = 25 °C$		31		
t _{d(off)}	Turn-off delay time			222		
t _f	Current fall time			33		
E _{on}	Turn-on switching energy ²			2220		μJ
E _{off}	Turn-off switching energy ³			1470		
t _{d(on)}	Turn-on delay time	V_{CC} = 800 V, V_{GE} = 15 V, I_{C} = 50 A,		22		ns
t _r	Current rise time	$R_G = 5 \Omega$, $T_J = 175 °C$		31		
t _{d(off)}	Turn-off delay time			259		
t _f	Current fall time			51		
E _{on}	Turn-on switching energy ²			2300		μJ
E _{off}	Turn-off switching energy ³			2440		

Notes:

- 1. See MIL-STD-750 Method 3471.
- 2. E_{on} is the clamped inductive turn-on-energy of this device; there is no contribution to E_{on} from the SiC diode. (See Figure 1-19, Figure 1-20).
- 3. E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figure 1-19, Figure 1-21.)

1.4. Typical Performance Curves

Data for performance curves are characterized, not 100% tested.

Figure 1-1. Output Characteristics

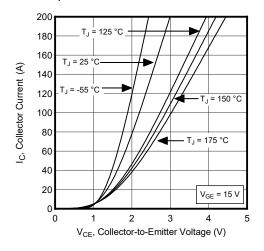


Figure 1-2. Transfer Characteristics

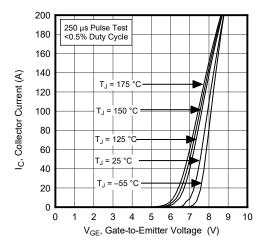


Figure 1-3. Gate Charge

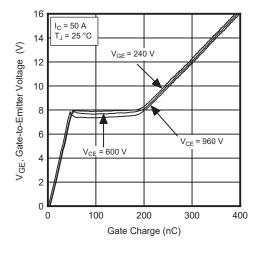


Figure 1-4. On-State Voltage vs. Gate-to-Emitter Voltage

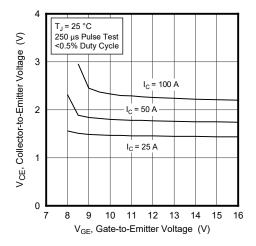


Figure 1-5. On-State Voltage vs. Junction Temperature

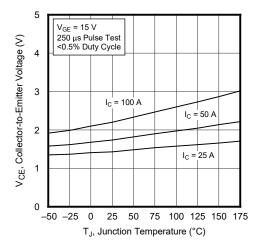


Figure 1-7. Turn-On Delay Time vs. Collector Current

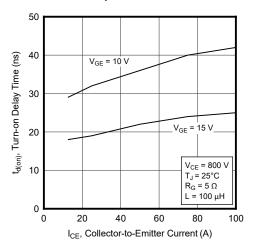


Figure 1-9. Current Rise Time vs. Collector Current

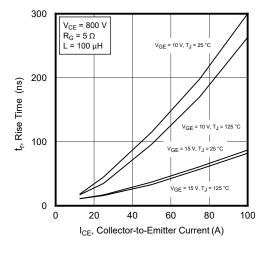


Figure 1-6. DC Collector Current vs. Case Temperature

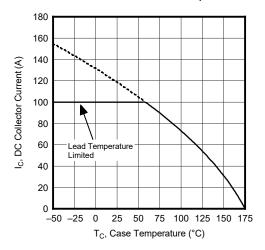


Figure 1-8. Turn-Off Delay Time vs. Collector Current

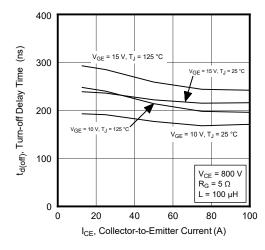


Figure 1-10. Current Fall Time vs. Collector Current

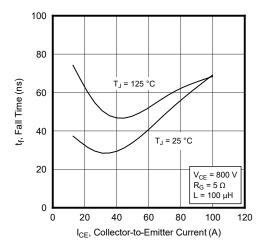


Figure 1-11. Turn-On Energy Loss vs. Collector Current

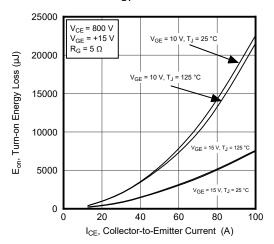
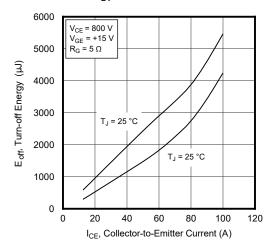



Figure 1-12. Turn-Off Energy Loss vs. Collector Current

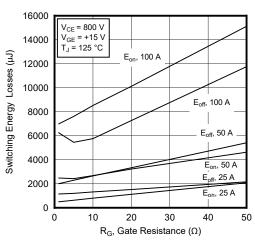


Figure 1-13. Switching Energy Losses vs. Gate Resistance Figure 1-14. Switching Energy Losses vs. Junction Temperature

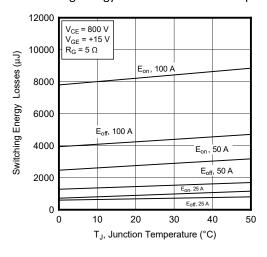
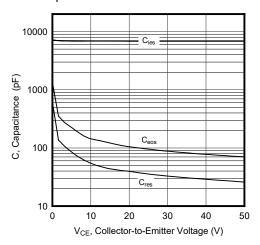



Figure 1-15. Capacitance vs. Collector-To-Emitter Voltage Figure 1-16. Reverse-bias Safe Operating Area

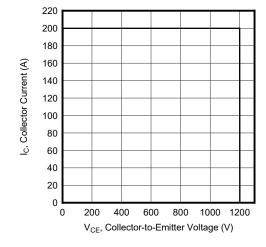


Figure 1-17. Maximum Transient Thermal Impedance

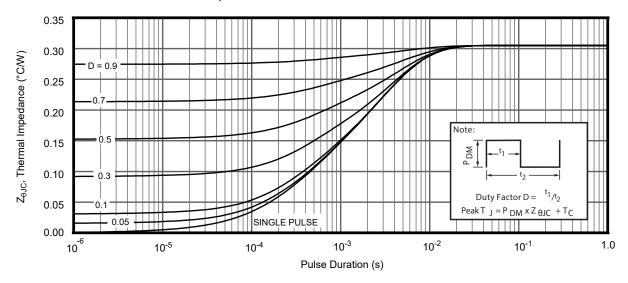


Figure 1-18. Transient Thermal Impedance Model

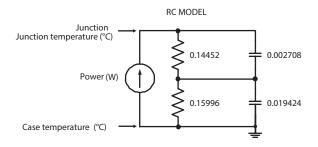


Figure 1-19. Inductive Switching Test Circuit

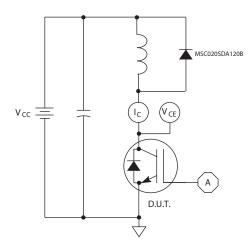


Figure 1-20. Turn-on Switching Waveform and Definitions

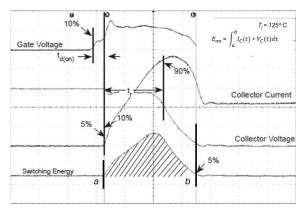
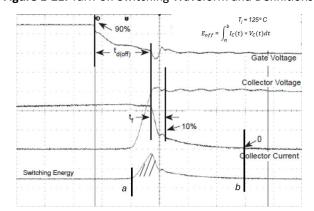



Figure 1-21. Turn-off Switching Waveform and Definitions

2. Device Specifications: Zero-Recovery SiC Anti-Parallel Diode

This section shows the specifications of the co-packaged, anti-parallel diode.

2.1. Absolute Maximum Ratings

The following table shows the absolute maximum ratings of the anti-parallel diode. $T_C = 25$ °C unless otherwise specified.

Table 2-1. Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I _F	Maximum DC forward current (T _C = 25 °C)	49	Α
	Maximum DC forward current (T _C = 135 °C)	22	
	Maximum DC forward current (T _C = 145 °C)	18	
I _{FRM}	Repetitive peak forward surge current (t_p = 8.3 ms, half sine wave)	64	
I _{FSM}	Non-repetitive forward surge current (t_p = 8.3 ms, half sine wave)	115	
P _{TOT}	Total power dissipation (T _C = 25 °C)	186	W
	Total power dissipation (T _C = 110 °C)	80	

2.2. Electrical Performance

The following table shows the static characteristics of the anti-parallel diode.

Table 2-2. Static Characteristics

Symbol	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
V _F	Forward voltage	I _F = 20 A, T _C = 25 °C		1.5	1.8	V
		I _F = 20 A, T _C = 175 °C		2.0		

2.3. Typical Performance Curves

Data for performance curves are characterized, not 100% tested.

Figure 2-1. Maximum Transient Thermal Impedance

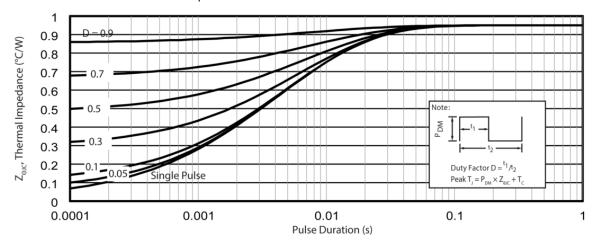


Figure 2-2. Forward Current vs. Forward Voltage

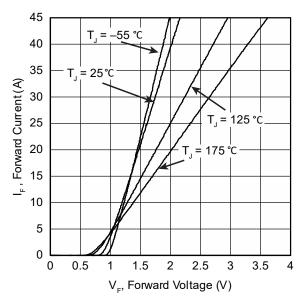


Figure 2-3. Max. Forward Current vs. Case Temp.

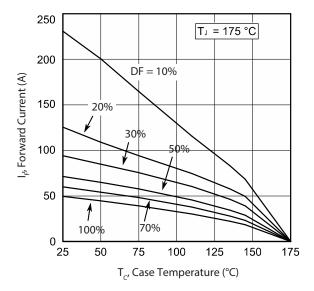


Figure 2-4. Max. Power Dissipation vs. Case Temp.

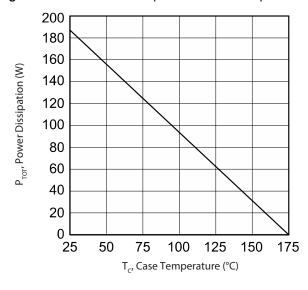
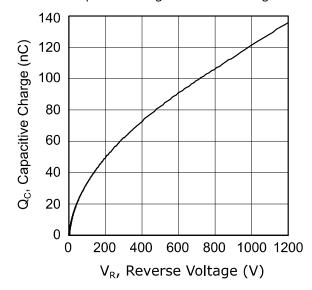
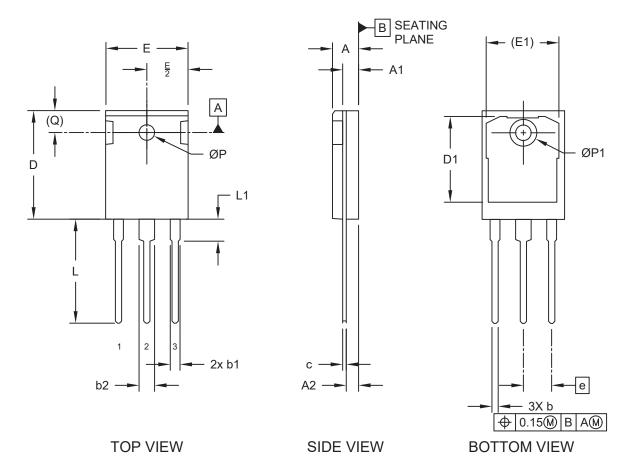



Figure 2-5. Total Capacitive Charge vs. Reverse Voltage


3. Package Specification

This section shows the package specification of this device.

3.1. Package Outline Drawing

The following figure illustrates the TO-247 package outline of this device.

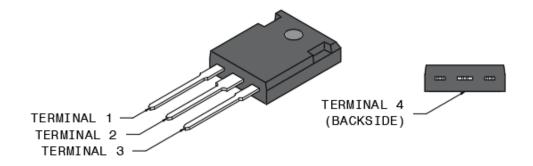
Figure 3-1. Package Outline Drawing

The following table shows the TO-247 dimensions and should be used in conjunction with the package outline drawing.

Table 3-1. TO-247 Dimensions

Dimension Limits		Dimensions (mm)		
		Min.	Max.	
Number of leads	N		3	
Pitch	е	5.44	I BSC	
Overall height	A	4.70	5.31	
Tab height	A1	1.50	2.49	
Seating plane to lead	A2	2.21	2.59	
Lead width	b	1.02	1.40	
Lead shoulder width (×2)	b1	1.65	2.41	
Lead shoulder width	b2	2.87	3.38	

Table 3-1. TO-247 Dimensions (continued)				
Dimension Limits		Dimensions (mm)		
		Min.	Max.	
Lead thickness	С	0.41	0.79	
Lead length	L	19.81	20.32	
Lead shoulder length	L1	3.99	4.50	
Molded body length	D	20.80	21.46	
Thermal pad length	D1	16.25	17.65	
Total width	E	15.49	16.26	
Thermal pad width	E1	13.10	14.50	
Hole center to tab edge	Q	6.15	5 REF	
Hole diameter	ØP	3.51	3.81	
Thermal pad hole diameter	ØP1	7.18	3 REF	


Notes: Dimensioning and tolerancing per ASME Y14.5M

- BSC: Basic dimension—Theoretically exact value shown without tolerances.
- REF: Reference dimension—Usually without tolerance, for information purposes only.

3.2. Terminal Pinout

The following figure illustrates the terminal pinout of this device.

Figure 3-2. Terminal Pinout

The following table shows the electrical signal terminal pinout of this device.

Table 3-2. Electrical Signal Terminal Pinout

Terminal	Definition
TERMINAL 1	Gate
TERMINAL 2	Collector, Diode Cathode
TERMINAL 3	Emitter, Diode Anode
TERMINAL 4	Collector, Diode Cathode

4. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Table 4-1. Revision History

Revision	Date	Description
В	08/2025	 Corrected data in IGBT Electrical Performance section. Updated select graphs in IGBT Typical Performance Curves section.
A	07/2025	Document created.

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-information/microchip-trademarks.

ISBN: 979-8-3371-1753-9

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip products are strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

