ScioSense’

\

This product, formerly sold by ams AG, and before that optionally by either
Applied Sensors GmbH, acam-messelectronic GmbH or Cambridge CMOS Sensors,
is now owned and sold by

ScioSense

The technical content of this document under ams / Applied Sensors / acam-
messelectronic / Cambridge CMOS Sensors is still valid.

Contact information
Headquarters:
Sciosense B.V.

High Tech Campus 10
5656 AE Eindhoven
The Netherlands

info@sciosense.com

WWW.sciosense.com

mailto:info@sciosense.com

amt

acam-messelectronic gmbH

is now

Member of the
ams Group

The technical content of this acam-messelectronic document is still valid.

Contact information:

Headquarters:

ams AG

Tobelbaderstrasse 30

8141 Unterpremstaetten, Austria
Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

=10=1

mess+electronic

FICOCAP®

Data Sheet

S
PCan@d2Ax DSP

Single Chip Solution for Capacitance Measurement
Volume 2: Digital Signal Processor

August 16th, 2013, Version 0.2
Document-No: DB_PCapd2A_Vol2_en.pdf

PICOCAP® PCap@2A DSP

Published by acam-messelectronic gmbh
©acam-messelectronic gmbh 2013

Disclaimer / Notes

“Preliminary” product information describes a product which is not in full production so
that full information about the product is not available yet. Therefore, acam
messelectronic GmbH (“acam”) reserves the right to modify this product without notice.
The information provided by this data sheet is believed to be accurate and reliable.
However, no responsibility is assumed by acam for its use, nor for any infringements of
patents or other rights of third parties that may result from its use. The information is
subject to change without notice and is provided “as is” without warranty of any kind
(expressed or implied). PICOCAP is a registered trademark of acam. All other brand and
product names in this document are trademarks or service marks of their respective
owners.

Support / Contact
For a complete listing of Direct Sales, Distributor and Sales Representative contacts, visit

the acam web site at:

http: //www.acam.de/sales/distributors/

For technical support you can contact the acam support team in the headquarters in
Germany or the Distributor in your country. The contact details of acam in Germany are:

support@acam.de or by phone +49-7244-74190.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/
http://www.acam.de/sales/distributors/

[
PCGD@EA DSP mess-electronic

Content
B = 1Y 7= =T 0 T 001V 7= T Y 7= Y 1-1
2 DSP & ENVIrONMENE .o e 2-1
2.1 BAM SO rUCEUPE .ot 2-2
2.2 SRAM /DT P o 2-9
2.3 DSP INPUES & OUBPUES ..ttt e e 2-10
2.4 ALU FlagS it 2-13
2.5 DSPOUT — GPIO ASSIGNMENE ...ttt et e eeens 2-15
2.8 DSP ConfigUration .o e 2-18
3 INSEPUCEION S . oo e 3-1
G A I 1= v o1 o oo =2 3-2
3.2 Instruction Details ... e 3-14
4 ASSEMDIY Programis ..o 4-1
L T 1011 = Yo 1Y = 4-2
4.2 SAMPIE B0 ... e 4-3
D LIBPA I S o 5-1
Tt R =1 = Vo = T o I o 9-2
0.2 PCapRa. N 5-3
T o T Lo T o T 5-4
T T Lo 5-5
9.5 signed24_to_signedd 8. h ... 5-5
T o o o= T 5-6
0.7 PUISE. N o-7
T T 1Y T T 9-7
S I o = To 1= o 1 o 5-8
B EXAMIPI S et e 6-1
6.1 Standard Firmware, Version 03.07.02 ... 6-1
7 MISCEIIANEOUS ... e 7-1
72 B = U o = 1= o T o 7-1
7.2 DoCUMENE HiSEOPY .ttt e 7-1
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

http://www.acam.de/

[
PCGD@EA DSP mess-electronic

1 System Overview
This volume 2 datasheet describes the 48-DSP of the PCapd2A. It describes only the

items related to the DSP itself. For all other issues please refer to the volume 1.

A 48-Bit digital signal processor (DSP) in Harvard architecture has been integrated to the
PCapd?2. It is responsible for taking the information from the CDC and RDC measuring
units, for processing the data and making them available to the user interface. Both, the
CDC/RDC raw data as well as the data processed by the DSP are stored in the RAM. The
program for the DSP is stored either in the OTP or the SRAM. The DSP can collect
various status information from a set of 64 1/0 Bits and write back 16 of those. This way
the DSP can react on and also control the GPIO pins of PCap@2. The DSP is internally
clocked at approximately 100 MHz. The internal clock is stopped through a firmware
command, to save power. The DSP can also be clocked by other sources (e.g. a low power

clock). The DSP starts again upon a GPIO signal or an “end of measurement” condition.

In its simplest form, the DSP transfers the pure time measurement information from the
CDC/RDC to the read registers without any further processing (PCapd2_Raw_values.hex].
The next higher step is to calculate the capacitance ratios including the information from
the compensation measurements, as it is provided in acam’s standard firmware version
PCapWd2_standard.hex.

The DSP is acam proprietary to cover low-power tasks as well as very high data rates. It is
programmed in Assembler. A user-friendly assembler software with a graphical interface,

helptext pop-ups as well as sample code sustain programming efforts.

Figure 1-1 DSP Embedding

c/ lc/
SPI - fald ™| spi
Program Memory
CDC (—>» (SRAM or OTP)
RDC [—» i
- DSP

:

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-1

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

http://www.acam.de/

|
PcangA DSP mess-electronic

2 DSP & Environment

The detailed structure of how the DSP is implemented into the PCapd2 is shown in figure
2-1.

Figure 2-1 DSP Environment

ADR ospread RAM hopwirite p| NC/SPI
Interface
127|Reserved
122 | Reserved A
121|PORTINFO
120|RTC_DATA
119|ZERO
118 MW16
CDC
/ . - Program Memory
|
I oo | (SRAM or OTP)
101[tm2 | '
RDC »| 100|TM1 TIMERO 4k x 8 bit
v 99 I [PuLser
e I [puiseo EEPROM
98| TREF | |
___________________ 128 x 8 bit
97| EE_DATA
96| DPTR3 / EE_ADD A
95| DPTR2 -—
94|DPTR1
93| DPTRO
=== ————— ———— F——— DSP Program PC- Stack
92|LBD_DATA | RES11 RAD Stack C(]);nbtiir 8x
1IC/SPI . [Rasss | 4x
L | il
Interface [e . RAM Address f
iy Pointer -
RAM adr. stack .
81w e I |reso RAD 6 bit - il Instruction Decoder
 CErEEEE— i '
79 1 Accu R |
Normal registers 80 x 48 bit Accu A Accu B | |
i i [
-t > 48 bit 48 bit i :
A (N
. A A il e
I 31 2
DSP Read/Write Y h J h J 1 5y &
o
|
ALU == :
c|O|S |z |
\ A |
T
\ Y Ly
| 1/0 bits, 64 x 1 Input, 16 x 1 Output |
| Status register | / A
\ 4

Configuration registers GPIO

This Harvard DSP for 48 bit wide parallel data processing is coupled to a 128 x 48 bit
RAM, 80 x 48 bit thereof free accessible. In read access, the DSP can get the CDC
measurement raw data from address space 102 to 118, the RDC raw data from address
space 98 to 101. By write access the DSP provides the output data to either the serial
interfaces (addresses 81 to 92) or to the PDM/PWM interfaces (addresses 98, 99).

A detailed description of the RAM is given is section 2.1. The DSP operates with two
accumulators A and B and has direct access to the RAM, which can be seen as a third
accumulator. The RAM address pointer is of B bit size, and there is a 4-fold stack for
RAM addresses.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-1

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

The program code for the DSP is in the OTP or the SRAM. During evaluation, the program
is typically in the SRAM. In production it will be in the OTP. For fast applications it is also
possible that after power-on reset the program is copied from the OTP into the SRAM
automatically. The program counter has 12 bit and there is an 8-fold stack for the

program counter.

Finally, the DSP can get a lot of information from the 64 1/0 bits. The read information
covers the ALU status, trigger information, some of the configuration bits and the
information about the status of the GPIOs. 16 of those bits can be used as outputs,
setting the GPIOs and also some internal information. For details see section 2.5. The
DSP can read these bits by means of instruction jcd (conditional jump) and set those bits

by means of instructions bitS/bitC (bit Set/Clear).

The ALU flags overflow, carry, equal/not equal and pos./neg. are used directly as

condition for the jcd instructions and are also mirrored in the 1/0 bits.

2.1 RAM Structure
The RAM plays a key role. It is made of 128 words with size of maximum 48 bit. The DSP
has free write and read access to registers address 80 of those words, all 48 bits wide.

The RAM space addresses 81 to 92 and 98 and higher is different for read and write.

The main data in the read section are the raw data as they come from the CDC and the
RDC as well as the parameters. The parameters are part of the configuration registers

and set via the serial interface or copied from the OTP.

The DSP reads those raw data, does the data processing and writes back the results into
the write section of the RAM. From there, the user can read the final results through the

serial interface.

Some of the RAM cells are dedicated to special functions and will be described in the

following in detail.

Table 2-1 gives a full overview of the RAM write and read registers.

2-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCGD@EA DSP mess-electronic
Table 2-1 RAM Structure in Detail
RAM: DSP Read RAM: DSP Write
Addr | Description Bits Addr | Description Bits
127 Reserved -
122 Reserved -
121 PORTINFO 24
120 RTC_DATA 16
119 ZERO 48
118 MW 16 37
37
102 MWQ0OO 37
101 ™2 37
100 TM1 37 100 TIMERO 16
99 T™MO 37 99 PULSE1 16
98 TREF 37 98 PULSEO 16
97 EE_DATA 8
96 DPTR3 / EE_ADD 7
95 DPTRZ2 7
94 DPTR1 7
93 DPTRO 7
92 LBD_DATA 6 92 RES11 24
91 PARAS 24 91 RES10 24
83 PARAQO 24 83 RES2 24
82 RAM_adr_Stack 24 82 RES1 48/24
81 2/ast_RAM_address 48 81 RESO 48/24
80 Flags / GPIO's 48
79 Free RAM 48
48
@) Free RAM 48

2.1.1 Registers O to 79
This is normal RAM space without any special functions. It is readable and writable via

instruction rad.
Example:

Add content of RAM address 12 and 13 and write the result into RAM address 13

rad 12
move a, r
rad 13

add r, a

This RAM space can be used as a normal register.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-3

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

2.1.2 Register 80, Flags & Internal Control Signals
Table 2-2 Flags

Bit Flag Name Default Description

(after Reset)
8] EE_ON_BY_DSP 0 Disjunction (OR) with EE_ON from CFG
1 CFG_BANK_SEL 0 Switches config Bank for alternated

settings of R_TRIG_SEL, C_TRIG_SEL,
CONV_TIME, C_AVRG

2 C_SELFTEST_BY_DSP 0 Antivalence (XOR) with C_SELFTEST
from config

3 RDCHG_COM_INT_SEL | O O := use RDCHG_IN_SELO
1 := use RDCHG_IN_SEL"
for internal compensation
4.7 free to use 0
8 RST_RDC pulsed Temperature reset. This flag has to be
set 1, after each RDC measurement.
Otherwise a new RDC measurement is
not possible.
This flag is set back to O automatically
16..47 | free to use unknown

2.1.3 Read Register 81
This register is there to get the N-th power of 2. The exponent N needs to be written to
the RAD stack. The result can be read from register 81. In the assembler, the necessary

three instructions are merged into one:

load2exp a, 10 ; a = 2710 = 1024

is the same as

rad 10
rad 81
move a, r

A very simple and efficient method to set an accumulator = 1 is

load2exp b, ® ; b =2%"0 =1

2.1.4 Read Register 82

This register contains the content of the RAM address stack. The 24 bit data is made of
the 4 last B-bit RAM addresses. This address can be used to load 24 bit constants from
the program memory into the data space. The necessary B instructions are merged into
one single instruction by the assembler.

load a, 1715956 ; a = 1715956

is the same as

2-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGDQEA DSP mess-electronic

rad ’hee ; “hee * 2718

rad ’h22 ;4 2h22 * 2712
rad *h3b ;+ *h3b * 276

rad *h34 ;+ ’h34 = 1715956
rad 82

move a, r
2.1.5 Read Register 83 to 91, Parameters
The content of the configuration registers addresses 50 to 76, the 9 parameters, is

copied into this RAM space and made available to the DSP this way.

The parameters are used to provide variable and firmware specific configuration data.
Typically, e.g. PARAMETERS is used in the standard firmware and others for the gain

correction factor.

2.1.6 Read Register 92, Low battery detection
This register shows the result of the Low-voltage detection measurement, LBD_DATA. The

value has 6 bit. The result depends on the trim of the Bandgap (recommended = 7).
BG_TRIM1 = 7: Voltage = 2.026 V + LBD_DATA * 24.4 mV

2.1.7 Read/Write Registers 93 to 96, Data Pointer
These registers may be used for indirect addressing. They are 7 bits wide. DPTR3 is

simultaneously used as address pointer for the EEPROM.

Load a register with the address you want to manipulate:

load a, <myaddress> load a, <myaddress>
rad DPTR@ rad 93
move r, a move r, a

Load a RAM address pointer with content of DPTRO:

rad _at_DPTR@ ; now ram address pointer is set to content of DPTR@

Il Hint: in the PCapB2x.h "_at_DPTRO" to "_at_DPTR3" are set to values of 284 to 287.
These are no valid RAM addresses but just indicators to the assembler to generate the

corresponding opcodes.

Example direct memory address: Copy a memory block from one address to another:

__sub_dma__: ; DPTR1 := source_address; DPTRO :=
:2: E destination address; b:= length of dma

__sub_dma_loop__:
rad _at DPTR1

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-5

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

move a, r
rad _at_DPTR@
move r, a

rad DPTRO
inc r
rad DPTR1
inc r
inc b

JNE __sub_dma_loop__
jrt

2.1.8 Read/Write Register 97, EEPROM DATA
This register named EE_DATA is used to write or read data to or from EEPROM.

Read:

To read data from the EEPROM the read address has to be written to DPTR3/EE_ADD,
register 96 and a read strobe (bitS EE_RD) must be generated. The DSP has to wait until

the data on Register 97 are valid. Afterwards, the value can be fetched from register 97:

load a, <myaddress>
rad EE_ADD

move r, a

bitS EE_RD

while_ee_rd_loop:
jcd EE_BUSY while_ee_rd_loop

rad EE_DATA
move a, r

Write:
For writing into the EEPROM it has to be activated and the EE_WR_EN has to be set.

To write to the EEPROM the address has to be loaded to DPTR3/ EE_ADD (register 96)

and the value has to be written to EE_DATA (register 97]). No further action is necessary.

Before each write-process ensure that the EEPROM is ready.

Erase:

2-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGD@EA DSP mess-electronic

To erase the EEPROM it has to be activated and writing has to be enabled. To erase a
databyte, the address has to be set to DPTR3/EE_ADD (Register 96) and an erase-pulse
has to be generated (bitS EE_ER].

load2exp a, EE_ON
rad FLAGREG
or r, a

load a, <myaddress>
rad EE_ADD
move r, a

while_ee_busy:
jcd_EE_BUSY, while_ee_busy

bitS EE_ER

while_ee_erasing:
jcd EE_BUSY, while_ee_erasing

load b, <mycontent>

rad EE_DATA
move r, b

while ee_writing:
jcd EE_BUSY, while ee_writing

load2exp a, EE_ON
not a

rad FLAGREG

and r, a

2.1.9 Read Register 98 to 101, RDC Results
Those register hold the resistance discharge time measurement raw data of 37 bit. The

will be used by library rdc.h to calculate the resistance ratios.

2.1.10 Read Registers 102 to 118, CDC Results
Those register hold the capacitance discharge time measurement raw data of 37 bit. The
will be used by library cdc.h to calculate the resistance ratios, taking into account the

compensation methods selected.

2.1.11 Read Register 119, ZERO

This register a default zero value for easy programming.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-7

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

2.1.12 Read Register 120, RTC_DATA

There is a real time counter which can be used to have long-term timing information. The
used demands an external 32.768 kHz oscillator. The RTC is a Gray-counter with 2 pre-
divider, which gives a base period of 4 seconds and a measurement range of 3 days and

49 minutes. The count is given in Gray-code. Library file gray2bin.h supports the

conversion into binary data format.

2.1.13 Read Register 121, PORTINFO
The low 8 bits mirror the port enable setting as defined by configuration parameter
C_PORT_EN in register 12.

Bits 8 to 17 are error flags for the capacitance ports including the internal reference

ports.

2.1.14 Write Registers 81 to 92
These are the result registers to which the DSP has to write the output data so that the
user can read those through the SPI/IIC interface as Res O to Res 7.

Addresses 81 and 82 are 48 bit, while the others are 24 bit wide only.
Attention: These Registers are write only! You can’t read from these Registers!

2.1.15 Write Registers 98, 99
These registers contain the data that is used to generate the PWM/PDM output signals.
After the DSP has calculated and scaled the output data, it writes those into these two

registers. The data are 14 bit wide.

2.1.16 Write Register 100, TIMERO
The DSP has a 16bit Timer based on the OLF clock. This Timer may be used to generate
long delays while the DSP is halted. Bit #1 (timer) in DSP_START_EN must be set!

By writing a value to Register 100 the timer starts to count up from O each OLF-clock

cycle until the written value has been reached. Then a DSP_START_TRIG is generated.
If the DSP is not halted the TIMERO_IRQA_N Flag could be tested anyway.
Example 1 (without halting DSP):

CONST wait_time_1ms 50 ; 50*20us (@50kHz)
load a, wait_time
rad TIMER@

move r, a

2-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGDQEA DSP mess-electronic

timer_wait_loop:
jcd TIMERO_IRQ_N, timer_wait_loop

Example 2 (with halting DSP, DSP run on internal oscillator)

CONST wait_time_1ms 50 ; 50%20us (@50kHz)

ORG ©

jcd TIMERO_IRQ_N, Skip_Timer®_process
jsb Triggered_by_ Timero

Skip_Timere_process:

load a, wait_time
rad TIMER®

move r, a

stop

Triggered_by_Timero:

2.2 SRAM / OTP

Table 2-3 Memory organization

SRAM OTP

Address direct/single double quad
dec. hex. Contents Length Contents Lengt Contents Lengt Contents Lengt

[Byte] h h h

[Byte] [Byte] [Byte]
40895 |FFF Unused |1 Test byte |1 Test byte |1
4094 FFE
. . Config. Config. Config.
4032 [FCO Registry |63 Registry |63 Registry |63
4031 |FBF
Program
2048 800h code 1984
2047 | 7FF Test byte |1
2046 |7FE
. . Config.
1984 | 7CO Registry |63
1983 |7BF
Program Program Program Program
0 0 code 4096 code 4032 |code 4032 |code 1984
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-9

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

2.2.1 Memory Management

The DSP can be operated from SRAM (for maximum speed, 100 MHz max.) or from OTP
(for low power, 10 MHz max. with error correction, 40 MHz max. without error
correction). When the firmware has been copied from the OTP into the SRAM and the
DSP runs from the SRAM, it is possible to use an SRAM-to-OTP data integrity monitor. It
can be activated setting parameter MEMCOMP in register O. This has to be disabled for

operation directly from the OTP and needs the DSP to run with the internal ring oscillator.

Memory integrity ("ECC”) mechanisms survey the OTP contents internally and correct faulty

bits (as far as possible].

MEMLOCK, the memory readout blocker, is activated by special OTP settings performed
when loading down the firmware (see the graphi-cal user interface existing for firmware
development). MEMLOCK contributes to the protection of your intellectual property.
MEMLOCK gets active earliest after it was written to the OTP and the chip got a power-on
reset. MEMLOCK is write-only, it can’t be set back.

2.2.2 oTP

The PCapB?2 is equipped with a 4 kB permanent program memory space, which is one-
time programmable, called the OTP memory. In fact, the OTP is total 8 kB in size but 4 kB
are used for ECC mechanism (error correction code). The default state of all the bits of
the OTP memory in an un-programmed state is 'high’ or 1. Programming a bit means
changing its state from High to Low. Once a bit is programmed to O, it cannot be
programmed back to 1. Data retention is given for 10 years at 95°C. MEMLOCK is

fourfold protected.

2.3 DSP Inputs & Outputs
The DSP has access to 64 bits of information on ALU status, start trigger, configuration,

input/output pins.

This information can be interpreted by means of instruction jcd, conditional jump.
Instruction conditional jump:

jcd pl,p2: if pl ==1 then jump to p2

16 of those bits can be set by the DSP, e.g. to set a GPIO or to select between RDC and
CDC data. The bits are controlled by means of instructions bitS/bitC (bit Set/bit Clear).

2-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

Table 2-4 DSP Inputs/QOutputs

mess-electronic

Bit Name Description Type Read Write
Bit # Bit #
DSP_0OUT<7...0> Status feedback of the 8 general DSP outputs IN 56 to 63
(Write bits O to 7).
SPI_TRIGGERED_N Flag = LOW indicates that a falling edge at a pin | Start trigger | 55
or an SPI/IIC opcode has started the DSP. This
flag is reset by a STOP instruction at the end of
the firmware.
PIN_TRIGGERED_N Flag = LOW indicates a GPIO has started the 53
DSP
TDC_OVFL_TRIGGERED_N* | Flag = LOW indicates that a TDC overflow has Start trigger | 52
started the DSP. This flag is reset by a STOP
instruction at the end of the firmware.
INTN_TRIGGERED_N Flag = LOW indicates the DSP is started by rising | Start trigger | 51
edge of INTN-Signal
RDC_TRIGGERED_N * Flag = LOW indicates that an RDC measurement | Start trigger | 50
has started the DSP. Therefore,
DSP_STARTONTEMP has to be set (configuration
register 8). This flag is reset by a STOP
instruction at the end of the firmware.
TIMERO_IRG_N Flag = LOW indicates the DSP is started by the Start trigger | 49
internal timer
CDC_TRIGGERED_N Indicates the DSP is started by the end of the Start trigger |48
capacitance conversion.
ALU_OFL_N ALU flags for overflow, carry, equal and sign. Status 47
The ALU flags are used by the jump instruction of
ALU_OFL ithe assembler Status 46
ALU_CAR_N Status 45
ALU_CAR Status 44
ALU_EQ Status 43
ALU_NE Status 42
ALU_POS Status 41
POR_FLAG_Wdog status bit 7 Status 28
POR_FLAG_CONFIG_N status bit 6 Status 27
POR_FLAG_SRAM_N status bit 5 Status 26
TIMERO_Busy Indicates that timerO is still running Status 25
DCHG_DUM_EN Config Reg 19
MR2_N Indicates whether measure mode 2 is set or not. | Config Reg 18
0 =MR2, 1 = MR1
C_COMP_FORCE_N Config Reg 17
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-11

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

C_COMP_R_N Config Reg 16
C_COMP_EXT_N Config Reg 15
C_COMP_IN_N Config Reg 14
C_SINGLE / Config Reg 13
C_DIFFERENTIAL_N
C_GROUNDED / Config Reg 12
C_FLOATING_N
TRIG_BG This parameter starts the Bandgap (to Out 15
synchronize with measurement) (pulse,
automatically set to 0)
TRIG_LBD This parameter starts the "Low Bat Detection” Out 14
(pulse, automatically set to O)
EE_ER EEPROM erase strobe (pulse, automatically set Out 13
to 0)
EE_RD EEPROM read strobe (pulse, automatically set to | Out 12
0)
ERR_OVFLN Flag = bit 16 of status register. Indicates an Status 11
overflow or other error in the CDC.
COMB_ERRN Flag = bit 16 of status register. This is a Status 10
combined condition of all known error conditions.
CYC_ACTIVEN Flag = bit 23 of status register. Indicates that Status 9
the CDC frontend is active.
LBD_BUSY Indicates Low-Bat-Detection is busy Status 8
EE_BUSY Indicates, EEPROM is busy Status 7
Interrupt_In Port INTN will be reseted by a positive edge on 6
SSN (SP1) or a stop condition (I2C), whit this the
current status of INTN could be detected
TEMPERRN Flag = bit 3 of status register. Indicates whether | Status 5
an error occurred during the temperature
measurement. O = error, 1 = no error
RDC_BUSY Flag = bit 2277 of status register. Indicates RDC | Status 4
unit is busy. O = measurement done, 1 =
measurement running.
Interrupt_Out Sets the interrupt (pin INTN) (pulse, automatically | Out 11
set to O)
(PAGE) Reserved, do not use Out 10
TRIG_RDC This bit starts a new RDC measurement. Out 9
(pulsed, automatically set to O)
TRIG_CDC This bit starts a new CDC measurement (pulsed, | Out 8
automatically set to 0)
DSP_7 Those two outputs are used by the DSP for Out 7
2-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

DSP_6 - Reset watchdog (DSP_7) Out 6
- INI_RESET by DSP (DSP_B)
DSP_5 Sets the general purpose output pin PG5 Out 5
DSP_4 Sets the general purpose output pin PG4 Out 4
DSP_3 When the Pulse is switched OFF then this bit In/0ut 3 3
can be used to set and clear the general
purpose output pin PG3. When the Pulse1 is ON
then this bit must be cleared so that the Pulse
output appears on PG3.
DSP_2 When the Pulse0 is switched OFF then this bit In/0ut 2 2
can be used to set and clear the general
purpose output pin PG2. When the PulseO is ON
then this bit must be cleared so that the PulseO
output appears on PG2
DSP_1 Set or read the general purpose 1/0s at pins In/0ut 1 1
PGO & PG1. The assignment is programmable
DSP_O and shown in detail below. In/Out 0 0

* A positive edge on those inputs start the DSP. The status of the start trigger is

memorized till the next reset or stop of the DSP. The start trigger information can be read

from inputs 32 to 36 by jcd.

2.4

ALU Flags

With each ALU operation flags are set. The ALU has four flags: overflow, carry, equal and

sign. The following table shows an overview:

Table 2-5 ALU Flags

Flag | Description Format | Modified by Interpreted by Range

Instructions: Instructions:
ON | No Overflow signed add, sub, mult, div |jOvIC, jOvIS >=-247 and <= 247 - 1
0 Overflow <-2%7 and > 2% -1
CN | No Carry* unsigned | add, sub, mult, div | CarC, jCarS < 248
C Carry* >= 248
z Equal / Zero signed / [add, sub, mult, div, |JEQ, |NE ==

unsigned | move, shiftL, shiftR
ZN | Not Equal / not I=0
Zero

S Positive signed add, sub, mult, div, |jPos, jNeg >=0

move, shiftL, shiftR
SN | Negative <0

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

* During addition, the carry C is set when a carry-over takes place from the most

significant bit, else C remains at O.

During subtraction, carry C is by default 1. Carry C is cleared only when the minuend <

subtrahend.
Eg.forA-B:ifA=B>C=1;fA<B->C=0.

In other words, the carry C is actually the status of the carry of the addition operation A+

2's complement (B).

2-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

2.5 DSPOUT - GPIO Assignment

PCapd?2 is very flexible with assignment of the various GPIO pins to the DSP

inputs/outputs. The following table shows the possible combinations.

Table 2-6 Pin Assignment

External Description In/0Out
Port
PGO SSN (in SPI-Mode) in
DSP_x O or DSP_x_2 | in* / out
FFO or FF2 in*
PulseO out
PG1 MISO (in SPI-Mode) out
DSP_x_1 or DSP_x_3 | in* / out
FF1 or FF3 in*
Pulse1 out
PG2 DSP_x Oor DSP_x_2 | in* / out
FFO or FF2 in*
PulseO out
INTN out
PG3 DSP_x_1 or DSP_x_3 | in* / out
FF1 or FF3 in*
Pulse out
PG4 DSP_OUT_4 out
(output only)
PG5 DSP_OUT_5 out
(output only)

mess-electronic

* These ports provide an optional debouncing filter and an optional pull-up resistor.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

Figure 2-2 GPIO Assignment

DSP_FF_IN®
o
DSP_MOFLO_ENO DSP IN
LD | 1-p 1
4’\\.—< ~40ms
i —C) Oo—CC FFO
o |
Pullup 3
PGO =
(S5N) O InjouT q L DSP_OUT @
< 1o DSP_FF_IN2
x [0
| PG_DIR_IN P
W —ra G
& P DSP_IN 2
| 1D 1
PG2 INJOUT]INTN o |
\-—«—C FF2
Lo
DSP_OUT_2
PULSE®
DSP_FF_IN1
o0
DSP_MOFLO_ENI DSP_IN 1
LD 1| 1-p 1
4’_{ ~40ms
| —() O—O FF1
o |
Pullup
PG1)
wmrso) O Injour » L DSP_OUT 1
< PO DSP_FF_IN3
< PXx 0
ol PG_DIR_IN e
e P DSP_IN 3
PG3 INJOUT/INTN \ 1D 1
FF3
Lo
DSP_OUT 3
PULSE1
PG4 out DSP_OUT 4
PG5 ouT DSP_OUT_5
2-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

Figure 2-3 Port trigger timing

Keypress vibrations
PGx in

Monoflop out with 40ms
DSP_MOFLO_EN=1

FFO/FF2
out
Trigger for DSP
program
reset by setting
DSP_OUT_O
Keypress vibrations
PGx in

Monoflop out with
DSP_MOFLO_EN=0

FFO/FF2
out

End of progran

gram:
reset by setting

DSP_OUT_O

mess-electronic

There is a possibility to activate a 40 ms debounce filter (“monoflop®) for the ports in case

these are used as inputs. This might be useful especially in case the DSP is started by the

pins (signals FFO, FF2). Figure 2-3 shows the effect of the monoflop filter.

The settings herefore are made in configuration registers 8 and 8. The relevant

parameters are:

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

Table 2-7
Parameter Description Settings
INT2PG2 Useful with GFN24 packages, where
no INTN pin is available. Permits
rerouting the interrupt signal to the
PG2 port. If INT2PG2 =1 then all
other settings for PG2 are ignored.
PG1_X_G3 The pulse codes can be output at 0 = PG1
ports PGY & PG1 or PG2 & PG3. In 1 =PG3
I2C mode of communication, they can
PGO_X_G2 be optionally given out on PG2 and 0 =PGO
PG3, instead of PGY and PG1. 1=pPG2
PG_DIR_IN toggles outputs to inputs (PG3/bit23 [0 = output
to PGO/bit20]). 1 =input
PG_PULL_UP Activates pull-up resistors in PGO to Bit 16 = PGO
PG3 lines; useful for mechanical Bit 17 = PG1
switches. Bit 18 = PG2
Bit 19 = PG3
DSP_FF_IN Pin mask for latching flip-flop Bit 12 = PGO
activation Bit 13 = PG1
Bit 14 = PG2
Bit 15 = PG3
DSP_MOFLO_EN Activates anti-bouncing filter in PGO Bit 9 for PG1
and PG1 lines Bit 8 for PGO

2.6 DSP Configuration

The configuration of the DSP is done in configuration register 8.

DSP_SRAM_SEL, DSP_START, DSP_STARTONOVL, DSP_STARTONTEMP, DSP_STARTPIN,

DSP_WATCHDOG_LENGTH, DSP_SPEED

Relevant bits are:

Table 2-8
Parameter Description Settings
DSP_SRAM_SEL Selects the program memory for the |O = 0OTP
processor 1 = SRAM
DSP_START Startbit. Command for the O-1(rising edge) = start
processor; processor clock is DSP
started, program counter jumps to
address zero and processing begins.
After firmware completion, DSP
stops its own clock!
As the DSP is triggered by rising
2-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGD@EA DSP mess-electronic

edge, this bit is to be set ‘O’ first and
then “1°.

DSP_START_EN<4..0> |see Vol1

DSP_STARTPIN Pin mask for DSP trigger 0O =FFO

1 = FF1

2 =FF2

3 =FF3
DSP_SPEED Setting the DSP speed 1 = Standard (fast)

3 = Low-current (slow)
DSP Start

There are various options to trigger the DSP.
In slave operation:

» Trigger by external controller. This is done by successive clearing and setting the

startbit DSP_START in configuration register 8.

In stand-alone operation:

= Trigger by pin. The trigger pin is selected between pins PGO to PG3 by
configuration parameters DSP_STARTPIN and PGO_X_PG2/PG1_X_PG3. Signal FFx
triggers the DSP. FFx has to be reset in the firmware by setting DSP_x, e.g.
BitS DSP_2
BitC DSP_2

= Trigger by the end of a temperature measurement. This option is selected by
configuration bit DSP_STARTONTEMP and is recommended for stand-alone
operation with temperature measurement.

= Trigger on error. This option is enabled by setting configuration bit
DSP_STARTONOVL. It should be used only if error handling is implemented in the

software.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-19

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP
Watchdog

The watchdog is (now) based on the constant clock (5 kHz) and counts always, even if the
DSP is halted. If the DSP doesn't reset the Watchdog within the configured watchdog time
a power-on reset is generated => auto-boot. Status Flag POR_FLAG_Wdog is set.

The watchdog is implemented to handle situations where no CDC or RDC is running.

In slave applications the watchdog should be disabled. If the watchdog is used disarm the

watchdog in advance to any SIF-Communication.

System Reset

In case the PCapd2 is operated as a slave, not in self-boot mode, it is necessary to do the

following actions after applying power:
1. Send opcode Power-up Reset via the serial interface, opcode 'h88.
2. Write the firmware into the SRAM by means of opcode “Write to SRAM".

3. Whrite the configuration registers by means of opcode “Write Config”. Register 20
with the RUNBIT has to be the last one in order.

4. Send a partial reset, opcode 'h8A
5. Send a start command, opcode 'h8C
2-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

3 Instruction Set

mess-electronic

The complete instruction set of the PCapd2 consists of 29 core instructions that have unique op-

code decoded by the CPU. Further, acam offers a set of libraries including common constant

definitions and mathematical operations

The library family is intended to be continuously expanded and be a great help during software development.

Table 3-1 Instruction set

Simple Arithmetic Miscellaneous RAM access Bitwise operation
add resetWDG rad not
sign powerOnReset clear and
sub nop load or
inc stop load2exp xor
move

Complex Arithmetic Shift & Rotate Unconditional jump Bitwise
div shiftL jsb bitC
mult shiftR irt bitS
Conditional jump
jcd
jCarC
jCarS
EQ
INE
iNeg
jofiC
jOfIS
jPOS

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-1

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

3.1 Instructions

and Bitwise AND

Syntax: and p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
p1 !=p2

Calculus: p1:=p1 & p2

Flags affected: |C0S Z

Bytes: 1

Description:

Bitwise AND (conjunction)

Category: Bitwise operation
add Addition
Syntax: add p1,p2
Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
Calculus: p1 :=p1 + p2
Flags affected: |COSZ
Bytes: 1
Description: Addition of two registers
Category: Simple arithmetic
bitC Clear single bit
Syntax: bitC p1
Parameters: p1 = number O to 15
Calculus: Set bit number p1 of the DSP output bits bit = 1

Flags affected:

Bytes: 1

Description: Clear a single bit in the DSP output bits
Category: Bitwise

bitS Set single bit

Syntax: bitS p1

Parameters: p1 = number Oto 15

Calculus: Set bit number p1 of the DSP output bits bit = 1

Flags affected:

Bytes: 1
Description: Set a single bit in the DSP output bits
3-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

Category: Bitwise

clear Clear register

Syntax: clear p1

Parameters: p1 = ACCU [a,b,r]

Calculus: p1:=0

Flags affected: |S Z

Bytes: 2

Description: Clear addressed register to O
Category: RAM access

div Unsigned division

Syntax: div

Parameters: -

Calculus: Single div code: b :=(a/r), a := Remainder * 2

N div codes: b :=(a/r)*2A(N-1), a := Remainder * (2AN)

Flags affected:

SZ

Bytes:

1

Description:

Unsigned division of two 48-bits registers. When the div opcode is used
once, the resulting quotient is assigned to register 'b’. The remainder can
be calculated from ‘a’.

When N div opcodes are used one after another, the result in b :=
(a/r)*2A[N-1).

Before executing the first division step, the following conditions must be
satisfied:

‘b’ =0, and O<'a’<2*'r'.

If this condition is not satisfied, you can shift ‘a’ until this is satisfied. After
shifting, if a -> a* (27ea) and r -> r* (2/er), then the resulting quotient b
for N division steps is

b:=(a/r) * 27A(1+ea-er-N)

a = Remainder * (2AN)

Category: Complex arithmetic
inc Increment register
Syntax: inc p1

Parameters: p1 = ACCU [a,b,r]
Calculus: p1 :=pT1T +1

Flags affected: |C0S Z

Bytes: 1

Description:

Increment register

Category:

Simple arithmetic

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-3

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

jCarC Jump on Carry Clear
Syntax: jCarC p1

Parameters: p1 = jumplabel
Calculus: if (carry == 0) PC := p1

Flags affected:

Bytes:

2

Description:

Jump on carry clear. Program counter will be set to target address if
carry is clear. The target address is given by using a jumplabel. The
conditional jump does not serve the stack. Therefore it is not possible to
return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

jCarS new_label

jsb p1l

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

jCarS Jump on Carry Set
Syntax: jCarS p1

Parameters: p1 = jumplabel
Calculus: if (carry == 1) PC := p1

Flags affected:

Bytes: 2

Description: Jump on carry set. Program counter will be set to target address if carry
is set. The target address is given by using a jumplabel. The conditional
jump does not serve the stack. Therefore it is not possible to return by jrt.
If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:
jCarSC new_label
jsb p1
jrt
new_label:
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

jed Conditional Jump

Syntax: jcd p1, p2

Parameters: p1 = Flag or input port bit [63...0]. See section 2.3 for DSP Inputs.

3-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

p2 = jumplabel

Calculus:

If (p1 ==1)PC := p2

Flags affected:

Bytes:

2

Description:

Program counter is set to target address if the bit given by p1 is set to
one. The target address is given by using a jumplabel. The conditional jump
does not serve the stack. Therefore it is not possible to return by jrt.

Category: Conditional jump
JEQ Jump on Equal
Syntax: JEQ p1
Parameters: p1 = jumplabel
Calculus: if (Z==0)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on equal zero. Program counter will be set to target address if the
foregoing result is equal to zero. The target address is given by using a
jumplabel. The conditional jump does not serve the stack. Therefore it is
not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

JjNE new_label

jsb p1

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump
iNE Jump on Not Equal
Syntax: iNE p1

Parameters: p1 = jumplabel
Calculus: if (Z==1)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on not equal to zero. Program counter will be set to target address
if the foregoing result is not equal to zero. The target address is given by
using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

JEQ new_label

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-5

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

jsb p1l

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump
jNeg Jump on Negative
Syntax: iNeg p1
Parameters: p1 = jumplabel
Calculus: if (S==1)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on negative. Program counter will be set to target address if the
foregoing result is negative. The target address is given by using a
jumplabel.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

jPos new_label

jsb p1

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

jOvIC Jump on Overflow Clear
Syntax: jOvIC p1

Parameters: p1 = jumplabel

Calculus: if (0 ==0)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on overflow clear. Program counter will be set to target address if
the overflow flag of the foregoing operation is clear. The target address is
given by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

jOflS new_label

jsb p1l

jrt

3-6

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

new_label:
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

jovIS Jump on Overflow Set
Syntax: jOvIC p1

Parameters: p1 = jumplabel
Calculus: if (0 ==1)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on overflow set. Program counter will be set to target address if the
overflow flag of the foregoing operation is set. The target address is given
by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

jOflC new_label

jsb p1

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump
jPos Jump on Positive
Syntax: jPos p1
Parameters: p1 = jumplabel
Calculus: if (5 ==0)PC :=p1

Flags affected:

Bytes:

2

Description:

Jump on positive. Program counter will be set to target address if the
foregoing result is positive. The target address is given by using a
jumplabel. The conditional jump does not serve the stack. Therefore it is
not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the
following optimization:

jNeg new_label

jsb p1l

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-7

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

jrt

new_label:

In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

jrt Return from subroutine
Syntax: irt

Parameters: -

Calculus: PC := PC from jsub-call

Flags affected:

Bytes:

1

Description:

Return from subroutine. A subroutine can be called via ‘jsb’ and exited by
using jrt. The program is continued at the next command following the jsb-
call. You have to close a subroutine with jrt - otherwise there will be no
jump back.

The stack is decremented by 1.

Category: Unconditional Jump
jsb Unconditional Jump
Syntax: jsb p1

Parameters: p1 = jumplabel
Calculus: PC := PC from jsub-call

Flags affected:

Bytes: 2

Description: Jump to subroutine without condition. The programm counter is loaded by
the address given through the jumplabel. The subroutine is processed until
the keyword ‘jrt’ occurs. Then a jump back is performed and the next
command after the jsub-call is executed. This opcode needs temporarily a
place in the program counter stack (explanation see below]).
The stack is incremented by 1.

Category: Unconditional Jump

load Load Accumulator

Syntax: load p1,p2

Parameters: p1 = ACCU [a,b]
p2 = 24-bit number

Calculus: p1 :=p2

Flags affected: |SZ

3-8

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

Bytes:

B

Description:

Move constant to p1 (p1=ACCU, p2=NUMBER])

The following instruction is not allowed:

load r, NUMBER

This instruction is a macro that is replaced by the following opcodes:
rad NUMBER[23:18]

rad NUMBER[17:12]

rad NUMBER[11:6]

rad NUMBER[5:0]

rad 63

move [a, b], r

Here the 24-bits number is split into four pieces, the symbol [xx:yy]
indicates the individual bit range belonging to each piece. Please notice
that the ram address pointer is changed during the operations, keep this
in mind while coding.

Category: RAM access
load2exp Load Accumulator with 2exp
Syntax: load2exp p1,p2
Parameters: p1 = ACCU [a,b]
p2 = 6-bit number
Calculus: p1 :=2°p2
Flags affected: |S Z
Bytes: 2

Description:

Move 2A(p2) to p1(p1=ACCU, p2=NUMBER)]

The following instruction is not allowed:

load r, NUMBER

This instruction is a macro that is replaced by the following opcodes:
rad NUMBER[5:0]

rad 62
move [a, b], r
Category: RAM access
move Move
Syntax: move p1,p2
Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
Calculus: p1 :=pe
Flags affected: |S Z
Bytes: 1
Description: Move content of p2 to p1
Category: RAM access
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-9

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

mult Multiply
Syntax: mult
Parameters: -

Calculus: ab:=(b *r)
Flags affected: |S Z

Bytes: 1

Description:

Unsigned multiplication of the content of ab and r registers.

ab is the composition of the registers a and b, forming an 96-bits long
register, where ‘a’ takes the most significant bits, and register 'b’ takes
the less significant ones.

The result is stored in the composed register a and b. The register ‘a’
must be previously cleared.

This instruction only executes one multiplication step, to execute a full 48-
bits multiplication, this instruction must be executed 48 times. This has
the disadvantage of being tedious to code, but also has the advantage of
executing only the amount of arithmetic needed, if you don’t need a 48-bits
multiplication but N, where N<48, then you have only to execute N
multiplication steps in order to complete the full N-bits multiplication.

After one multiplication step, register ‘a’ contains ((a+(b[0]*r))>>1], and
register 'b’ contains { a[0], b[47:1] }. For example: lets denote the
individual bits of register ‘a’ as a[47], a[46], a[45]...... a[2], a[1], a[0], and
lets denote a range of bits of ‘a’ as: a[3:0], meaning the 4 less significant
bits of register ‘a’.

Then, after one multiplication step, a[46:0] = (a[47:0] + r[47:0] * b[O]) >>
1, where >> 1, means right shift by one position; the value of a[47] is
zero, and b[47] = (a[0O] + r[0O] * b[0O]), and b[46:0] = b[47:1]. The register
r remains unchanged.

Category: Complex arithmetic
nop No operation
Syntax: -

Parameters: -

Calculus: -

Flags affected:

Bytes: 1

Description: Placeholder code or timing adjust (no function)
Category: Miscellaneous

not Bitwise NOT

Syntax: not p1

Parameters: p1 = ACCU [a,b,r]

Calculus: p1 :=~p1

Flags affected: |C0S Z

3-10

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

Bytes:

1

Description:

Invert register

Category: Bitwise operation
or Bitwise OR
Syntax: or p1,p2
Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
p1 !=p2
Calculus: p1:=p1 | p2
Flags affected: |C0S Z
Bytes: 1

Description:

Bitwise OR (disjunction)

Category: Bitwise operation
powerOnReset |Power On Reset
Syntax: powerOnReset
Parameters: -
Calculus: -
Flags affected: |S Z
Bytes: 5]
Description: This is a symbolic opcode which is equivalent to the following
instruction sequence:
bitC 54
bitC 55
bitS 55
bitS 54
bitC 55
Category: Miscellaneous
rad Set RAM Address Pointer
Syntax: rad p1
Parameters: p1 = NUMBER [B-bit]
Calculus: -
Flags affected: |1
Bytes: 1
Description: Set pointer to ramaddress (range: 0..63)
Note:

rad _at_DPTRO and rad _at_DPTR1 are instructions that will be seen
in the firmware. With these opcodes, the address in the Data Pointer
(DPTRO &1 at RAM address 44 and 45) is taken as the address for

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

3-11

Member of the ams Group

mess-electronic

http://www.acam.de/

PICOCAP®

PCapd2A DSP

the RAM address pointer. _at_DPTRO is at address 285, _at_DPTR"1
is at address 287.

rad _at DPTR@

move a, r

will move the contents of the address stored in DPTRO to the A

register.

See also section 3.2.1.
Category: RAM access
resetWDG Clear watch dog timer
Syntax: resetWDG
Parameters: -
Calculus: -
Flags affected: |-
Bytes: 8]

Description:

Clear watchdog timer.
This is a symbolic opcode which is equivalent to the following
instruction sequence:

bitC 54
bitC 55
bitS 54
bitS 55
bitC 54
Category: Miscellaneous
shiftL Shift Left
Syntax: shiftL p1
Parameters: p1 = ACCU [a, b]
Calculus: p1 :=pl<<1
Flags affected: |S Z
Bytes: 1
Description: Shift p1 left --> shift p1 register to the left, fill LSB with O, MSB is
placed in carry register
Category: Shift and rotate
shiftR Shift Right
Syntax: shiftR p1
Parameters: p1 = ACCU [a, b]
Calculus: p1 :=p1>>1
Flags affected: |S Z
Bytes: 1
Description: Signed shift right of p1 --> shift p1 right, MSB is duplicated according
3-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

to whether the number is positive or negative

Category: Shift and rotate

sign Sign

Syntax: sign p1

Parameters: p1 = ACCU [a,b]

Calculus: When S =0 =>p1 :=|p1], S:=(1-p1/|p1]|)/2

When S =1 => p1:

- p1]. S :=(1-p1/[p1))/2

Flags affected:

SZ

Bytes:

1

Description:

The Signum flag takes the sign of accumulator, O when positive or 1
when negative.

The accumulator changes its sign after the execution of this opcode, if
and only if the Signum flag (before the execution) is 1.

Zero is assumed to be positive.

Category: Simple arithmetic
stop Stop

Syntax: stop
Parameters: -

Calculus: -

Flags affected: |-

Bytes: 1

Description:

Stop of the PCAP-Controller. The clock generator is stopped, the
PCAP-Controller and the OTP go to standby. A restart can be achieved
by an external event like ‘watchdog timer’, ‘external switch’ or ‘new
capacitive measurement results’. Usually this opcode is the last
command in the assembler listing.

Category: Miscellaneous
sub Subtraction
Syntax: sub p1,p2
Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
Calculus: p1:=p1 -p2
Flags affected: |[CO0S Z
Bytes: 1

Description:

Subtraction of 2 registers.
The following instructions are not allowed: add a,a. add b,b. add r,r

Category:

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Simple arithmetic

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

xor Bitwise XOR

Syntax: xor p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]
p1 !=p2

Calculus: p1 :=p1 A p2

Flags affected: |C0S Z

Bytes: 1

Description: Bitwise XOR (antivalence)

Category: Bitwise operation

3.2 Instruction Details

3.2.1 rad
Sets the RAM address. Typical example:

rad 12

move a, r
Pointer

rad _at_DPTRO and rad _at_DPTR1 are special instructions for indirect addressing. _at_DPTRO
and _at_DPTR1 are special BAM addresses 285 and 287 that have been defined in the firmware.

RAM addresses 44 and 45 are used as data pointers, named DPTRO and DTPTR1.

By means of

rad DPTRO

move r, a

an address is loaded into DPTRO. With
rad _at_DPTRO

the address in DPTRO is loaded.
Example: copy sequently RAM-content from one address-space to another
load a, CO_ratio

rad DPTR1

move r, a

load a, RESO

rad DPTRO

move r, a

3-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PcapmeA DSP mess-electronic

load b, 8

jsb __sub_dma__

__sub_dma__:

rad _at_DPTR1
move a, r

rad _at_DPTRO
move r, a

rad ONE

move a, r

rad DPTRO

add r, a

rad DPTR1

add r, a

sub b, a

jNE __sub_dma__
jrt

#endif

3.2.2 mult

The instruction “mult” is just a single multiplication step. To do a complete 48-bit multiplication this
instruction has to be done 48 times. The multiplicands are in accumulators b and r. Every step
takes the lowest bit of b. If it is one, r is added to accumulator a, else nothing is added.
Thereafter a and b are shifted right. The lowest bit of a becomes the highest bit of b. Before the
first step of the multiplication, a has to be cleared. The final result is spread over both

accumulators a and b.

The use of mult is simplified by using the standard.h library. This library includes function calls for
multiplications with arbitrary number of multiplication steps. E.g., a call of function mult_24 will do

a 24-step multiplication.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-15

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

Example 1: r= 5, b=5; 48-bit integer multiplication

Steps a b r
’bo..0000 ’b00000e. .000101 ’bo..0101 b=5;r=5
1 +, ’bo..0010 ’b100000. .000010 ’bo..0101 risaddedtoa,a& b
- shifted right
2 - ’bo..0001 ’b010000. .000001 ’bo..0101 a & b shifted right
3 +, ’bo..0011 ’bo01000. .000000 ’bo..0101 risaddedtoa,a& b
- shifted right
4 — ’bo..0001 ’b100100. .000000 ’bo..0101 a & b shifted right
- ’bo..0000 ’b110010..000000 ’bo..0101 a & b shifted right
6 - ’bo..0000 ’b011001. .000000 ’bo..0101 a & b shifted right
47 - ’bo..0000 ’bo00000.0100110 ’bo..0101 a & b shifted right
48 - ’bo..0000 ’b000B000. .010011 ’bo..0101 a & b shifted right

In many cases it will not be necessary to do the full 48 multiplication steps but much fewer. The
necessary number of steps is given by the number of significant bits of b and also the necessary

significant number of bits of the result.

But, if the multiplication steps are fewer than 48, the result might be spread between
accumulators a and b. Doing an appropriate right shift of the multiplicand in r, and the
appropriate number of multiplication steps, it is possible to ensure that the result is either fully in

aorinb.

Example 2: 24-bit fractional number multiplication, result in a

Let's assume that multiplicand b is 12.5, given as 24-bit number with 4 integer and 20 fractional

digits, and b has to be multiplied by 1.5. The result shall have 24 significant bits, too.

To have the final result fully in a, it is best to shift r as far as possible to the left. Therefore, r is
shifted 46 bit to the left, r = 'h600000 OOO0OOO. This left shift is easily done for constants.

The minimum number of multiplication steps is then given by the number of significant bits of b.

3-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

12.5*%1.5 = b*2%%8 * pxpeeR o [h*p20 x p* 46, Kh="hC8OOO0; r="h600000000000

Steps a b r

> h000000000000 > hoooeoeeC80000 ’h600000000000
8 - > h000000000000 > ho00000eeC300 ’h600000000000
16 - > h000000000000 ’h000000000eCs ’h600000000000
19 - > h000000000000 > ho0000000e0n019 ’h600000000000
20 +,—> >h300000000000 >’ h00000000000C ’h600000000000
21 - ’h180000000000 > ho00000000006 ’h600000000000
22 - >hoC0000000000 > h000000000003 ’h600000000000
23 +,—> ’h360000000000 ’ho00000000001 ’h600000000000
24 +, > >h4B0000000000 > h000000000000 ’h600000000000

After 24 multiplication steps the full 24-bit result stands in a, starting at the highest significant

bit. In many cases the result can be used in this form to do further mathematical processing, e.g.

as parameter r in a further multiplication.

In case the true decimal value has to be calculated from the result, this is done by following

formula:

pr‘DdUCt =a * 25teps+epr+expB =a * 224+[-2C]]+[48] =a * 2—42

’h4BO0O00000000*2-%2 = *h4B*2*2 = 75*22 = 18.75

Result in A:
Steps = expRes - expB - expR

Note: Steps >= Number of significant bits in B

Result in B:
Steps = expRes - expB - expR - 48

Note: Steps >= Number of significant bits in B

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

3.2.4 div

The instruction “div” is, like the multiplication, just a sinlge step of a complete division. The
necessary number of steps for a complete division depends on the accuracy of the result. The
dividend is in accumulator a, the divisor is in accumulator r. Every division step contains following

actions:
leftshift b
compare a and r. If a is bigger or equal to r then r is subtracted from a and One is added to b
leftshift a

Start Conditions: O<a<2*r,b=0

Again, multiple division steps are implemented in the standard.h library to be easily used by
customers. A call of function e.g. div_24 out of this library will do a sequence of 24 division steps.

The result is found in b, the remainder in a.
With N division steps the result in b:= (a/r)+2A(N-1), a:= remainder*2AN.

Example 1: a = 2, r = B, Integer division

Steps |a =2 b r=6
000000 . .000010 (0. .00000 0..0110 a < r, leftshift b, a
1 000000 . .000100 | 0. .00000 0..0110 a < r, leftshift b, a
2 000000..001000 | 0. .00000 0..0110 leftshift b, a >=r: a-=r, b+=1,
leftshift a
000000..000100 |0..00001 0..0110 a < r, leftshift b, a
4 000000 . .001000 | 0..00010 0..0110 leftshift b, a >=r: a-=r, b+=1,
leftshift a
o} 000000..000100 | 0. .00101 0..0110

Quotient = b * 27 = 0.3125, Remainder = a*2"=4*2° = (0.125

The following two, more complex examples show a nice advantage of division over multiplication:
The resolution in bit is directly given by the number of multiplication steps. With this knowledge,
assembly programs can be written very effectively. It is easy to use only the number of division

steps that is necessary.

Example 2: A = 8.75, R = 7.1875, Fractional number division, A & R with 4 fractional digits each.

8.75/7.1875 = a*2%°A / p*RoR = g*x24 / p*xp4

3-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

Steps |a =140 b r=119
1000 1100 0000 0000 0111 0011 leftshift b, a >= r: a-=r, b+=1,

leftshift a

1 0011 0010 0000 0001 0111 0011 a < r, leftshift b, a

2 0110 0100 0000 0010 0111 0011 a < r, leftshift b, a

3 1100 1000 0000 0100 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

4 1010 1010 0000 1001 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

5 0110 1110 0001 0011 0111 0011 a < r, leftshift b, a

B 1101 1100 0010 0110 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

7 1101 0010 9100 1101 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

8 1011 1110 1001 1011 0111 0011

QuoL’[ent - b * 2{7+9pr€po—5:5/35]

Remainder = g *2°***"¥ = 190*2"° = 0.0463

=155 * 2'*9 = 1.2109

Example 3: A = 20, R = 1.2, Fractional number division, R < A.

A and R are left shifted to display the fractional digits of R. Further, R has to be leftshifted till it is
bigger than A/2.

20/1.2 = a*2%Ph /p*QoeR = g*D4 /p *DB

Steps

a =320

b

r =307

0001

0100

0000

0000

0000

0000

0001

0011

0011

leftshift b, a >=r: a-=r, b+=1,
leftshift a

0000

0001

1010

0000

0000

0001

0001

0011

0011

a < r, leftshift b, a

0000

0011

0100

0000

0000

0010

0001

0011

0011

a < r, leftshift b, a

0000

ol10

1000

0000

0000

0100

0001

0011

0011

a < r, leftshift b, a

0000

1101

0000

0000

0000

1000

0001

0011

0011

a < r, leftshift b, a

gl

0001

1010

0000

0000

0001

0000

0001

0011

0011

leftshift b, a >=r: a-=r, b+=1,
leftshift a

o

0000

1101

1010

0000

0010

0001

0001

0011

0011

a < r, leftshift b, a

0001

1011

0100

0000

0100

0010

0001

0011

0011

leftshift b, a >= r: a-=r, b+=1,
leftshift a

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-19

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

8 0001 0000 0010 |[0000 1000 0101 [0Vl 0011 0011 |a < r, leftshift b, a

9 0010 0000 0100 (0001 0000 1010 [0Vl 0011 0011 |leftshift b, a >=r: a-=r, b+=1,
leftshift a

10 0001 1010 0010 (0010 0001 0101 (0001 0011 0011 |leftshift b, a >=r: a-=r, b+=1,
leftshift a

11 0000 1101 1110|0100 0010 1011 (0001 0011 0011 |a < r, leftshift b, a

12 0001 1011 1100|1000 0101 0110|0001 0011 0011

Quotient = b * 27ewheehersl _ D134 * P81~ 16 6719

The remainder is, as always, smaller than the denominator divided by 2 e.g. in the present
case, remainder < 1.2 / 2'°= 0,0003

Steps = 1 + expA - expB - expRes

3-20

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGp@EA DSP mess-electronic

4 Assembly Programs

The PCapd2 assembler is a multi-pass assembler that translates assembly language files into HEX
files as they will be downloaded into the device. For convenience, the assembler can include
header files. The user can write his own header files but also integrate the library files as they are
provided by acam. The assembly program is made of many statements which contain instructions
and directives. The instructions have been explained in the former section 3 of this datasheet. In

the following sections we describe the directives and some sample code.

Each line of the assembly program can contain only one directive or instruction statement.

Statements must be contained in exactly one line.

Symbols
A symbol is a name that represents a value. Symbols are composed of up to 31 characters from

the following list:
A-Z a-z,0-9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to

be taken for this.

Numbers
Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier.
Hexadecimals are specified by leading “Ox”.

Expressions and Operators

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at
assembly time and can be used to calculate values that otherwise would be difficult to be
determined.

The following operators are available with the given precedence:

Level Operator Description
1 0 Brackets, specify order of execution
2 */ Multiplication, Division
3 + — Addition, Subtraction
Example:
CONST 1
equal ((+ 3)/2)
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-1

Member of the ams Group

http://www.acam.de/

PICOCAP®

q.1

Directives

PCapd2A DSP

The assembler directives define the way the assembly language instructions are processed. They

also provide the possibility to define constants, to reserve memory space and to control the

placement of the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

Directive

Description

Example

CONST

Constant definition, CONST [name] [value]
value might be a number, a constant, a sum
of both

CONST
CONST

42
constant + 1

LABEL:

Label for target address of jump instructions.
Labels end with a colon. All rules that apply to
symbol names also apply to labels.

jsb LABEL1

Comment, lines of text that might be
implemented to explain the code. It begins
with a semicolon character. The semicolon
and all subsequent characters in this line will
be ignored by the assembler. A comment can
appear on a line itself or follow an instruction.

org

Sets a new origin in program memory for
subsequent statements.

equal

Insert three bytes of user defined data in
program memory, starting at the address as
defined by org.

org 0x23
equal ©6x332211

#tinclude

Include the header or library file named in the
guotation marks "" or brackets < >. The code
will be added at the line of the include
command.

In quotation marks there might be just the file
name in case the file is in the same folder as
the program, but also the complete path.
Names in brackets refer to the acam library
with the fixed path \Programs\acam
PCapg2\lib.

#tinclude <rdc.h>
#include "rdc.h"

#tifdef
t#telseif
#tendif

Directive to implement code or not, dependig
on the value of the symbol following the #ifdef
directive. Use e.g. to include header files only
once into a program.

#tdefine

Defines a symbol that will be interpreted as true

when being analysed by the #ifdef directive

#ifdef __standard_h__
t#else

#tdefine __standard_h__

#tendif

4-2

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

4.2 Sample Code

mess-electronic

In the following we show some sample code for programming loops in the various kinds, for the

use of the load instruction and the rotate instruction.

4.2.1 “for” Loop

Assembler C-Equivalent Comment

load a, max for(index=-max; index < max := number of repetitions
not a 0; index++) 2 complement for max (~max+1)
inc a

rad index store (-max) to index

move r, a

do: loop body

s{--}

rad index

inc r loop increment

jCarC do repeat while index < ©

4.2.2 “while” Loop

Assembler C-Equivalent Comment

do: while (expression)

rad expression {..}

move a, r activate Status Flags for

JEQ done sexpression®. Jump if expression ==
s{..} 0

clear a loop body

jJEQ do unconditional jump without writing
done; to program counter stack

4.2.3 “do - while” Loop

Assembler C-Equivalent Comment

do: do

5{..} {..} loop body

rad expression
move a, r
jNE do

while (expression)

activate Status Flags
jump if expression != @

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-3

Member of the ams Group

http://www.acam.de/

PICOCAP®

4.2.4

“do - while”

with 2 pointers

PCapd2A DSP

Assembler

C-Equivalent

Comment

load a, MW7
rad looplLimit
move r, a
load a, MWe
rad DPTRO
move r, a
load a, RES@
rad DPTR1
move r, a
do:
rad _at_DPTRO
move a, r
rad _at_DPTR1
move r, a
rad looplLimit

loopLimit = *MW7

ptrSource

*MWO ;

ptrSink = *ResO;

do { *ptrSink++ =
*ptrSource++ }

load max-address for ptrSource

load ptrSource with source
address

load ptrSink with sink address
loop body

load value from source

write value to sink

move a, r write max-address to a

rad DPTR1

inc r increment sink address

rad DPTRO

inc r sub a, r increment source
jCarsS do address

limitLoop - ptrSource
repeat loop if ptrSource <= max-
while (ptrSource <= MW7) [address

4.2.5 Load Negative Values

How to load a negative 24 bit value from the program memory

Assembler C-Equivalent Comment

load a, 5 a = -5 a = '"hoooooo_000005

not a a = '"hffffff_fffffa (:=-6)
inc a a = "hffffff_fffffb (:=-5)
4.2.6 Load Signed Values

How to load a signed 24 bit value from the program memory

Assembler C-Equivalent Comment

load2exp a, 23 b = <S24bC> a=2”23

load b, <S24bC> regd = <S24bcC>

rad o

move r, b

sub b, a

jCarC positive if(<S24bC> >= 2723)
sub b, a regd = <S24bC> - 2724
move r, b

positive:
move b, r

4-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGDQEA DSP mess-electronic

4.2.7 Rotate Right A to B

To rotate a value right from Akku A to Akku B, Akku B and R must be set to zero. Afterwards with
each mult command a single ,rotate right from A to B is done. This function could be used e.g.

to shift a 8-bit value to the highest byte in the register.

Assembler C-Equivalent Comment
load a, ©xa3 A = <U8bC>
clear b b = a << 40
move r, b
mult ;5 (8x)
mult
mult
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-5

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

http://www.acam.de/

[
PCGD@EA DSP mess-electronic

5 Libraries

The PICOCAP assembler comes with a set of ready-to-use library functions. With these libraries
the firmware can be written in a modular manner. The standard firmware 03.01.xx is a good

example for this modular programming.

When the DSP has to be programmed by the user for a specific application or when the firmware
ought to be modified, these library functions can be simply integrated into the application program
without any major tailoring. They save programming effort for known, repeatedly used, important

functions. Some library files are interdependent on other file(s) from the library.

The library functions are called header files (they have *.h extension) in the assembler software

and have to be included in the main *.asm program.

The following are the header files that are supplied with the PICOCAP assembler as part of the

standard firmware.

= standard.h

= PCapd2a.h

= cdc.h

= rdc.h

*» signed24_to_signed48.h
* dma.h

= pulse.h

= sync.h

= median.h

The input parameters, output parameters, effect on BAM contents etc. for each of these library
functions is explained in the tables below.

NOTE:

In the standard firmware and in all the library files, the notation “ufdN” is used as a comment. This
shows if the parameter is signed or unsigned and the number of fractional digits in the number,
N. For e.g. ufd21 indicates that the parameter is an unsigned number with 21 digits after the
decimal point, 21 fractional digits. If the u at the beginning is missing, it is a signed number.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-1

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

51 standard.h

Function: Standard math library for implementing multiplication, division and
shift operations.

Input parameters: For shift right (1-48): parameter in accumulator B

For shift left (1-48) : parameter in accumulator A

Multiplication (1-48 steps) : parameter in Accumulators B and R
Division (1-48 steps) : Dividend in Accumulator A, Divisor in R

Output/Return value: | For shift right (1-48): Output in B

For shift left (1-48) : Output in A

Multiplication (1-48 steps) : Output in AB

Division (1-48 steps): Quotient in B, Remainder can be calculated

from R

Prerequisites -

Dependency on other |-

header files

Function call shiftR_B_48, ..., shiftR_B_01
shiftL_A_48, ..., shiftL_A_0O1
mult_48, ..., mult_0O1

div_49, ..., div_01
__div_variable__
__mult_variable__

Temporary memory 4 |ocations - all declared and used in the “__temporary_variables__"
usage address range given as input parameter by the user.

Changes any RAM No
content
permanently?

Function | _div_variable__

variable number of division steps

parameter Akku A: dividend

Akku B: no of division steps

(rad) __sub_standard_divisor__ := divisor
return Value Akku B := (dividend/divisor)
call jsb __div_variable__

local / temporary ram |4x:
|__sub_standard_divisor__
| _var_indexO__
|__var_index1__

| _sub_standard_AkkuC__

5-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

Function __mult_variable__
variable number of multiplication steps
parameter Akku A: no of multiplication steps

Akku B: multiplier 1

(rad) __sub_standard_multiplier__ := multiplier 2

return Value

Akku AB := (multiplier 1 *multiplier 2]

call

jsb __mult_variable__

local / temporary ram

4x:
__sub_standard_multiplier__
__var_indexO__
__var_index1__
__sub_standard_AkkuC__

5.2 PCap@2a.h

Function:

This is a standard library for PCapd2A firmware projects. This
library contains the major address-mappings and constant names for
the PCap@d2A.

This file should be always included. It contains no commands, so no
pro- gram space is wasted

Input parameters:

Output/Return value:

The constants in the file are declared, these can be used further in
the program.

Prerequisites

Dependency on other
header files

Function call

Temporary memory
usage

Changes any RAM
content
permanently?

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-3

Member of the ams Group

http://www.acam.de/

PICOCAP®

5.3 cdc.h

PCapd2A DSP

Function:

Function for Gapacitance-to-Digital Gonversion. This module contains
the subroutine to determine the capacitor ratios, dependent on
measurement scheme and the compensation mode

Input parameters:

__sub_cdc_differential__ : 0O = single sensor

1 = differential sensor
__sub_cdc_gain_corr__ : Factor for TCsg ufd21
__persistent_cdc_first__ : Address where CDC results are to be
__temporary_variables__ : stored

Define address space for temporary

variables,

address < 39!

tbd result as (C1-
CO)/(C1+C0O)

Switches

#define __CDC_INVERSE__ Results in C1_ratio to C7_ratio are the
reversal values (CO/C1 etc.)

#define __SUB_CDC_FPP_x__ |x maybe a value between 19..25 select
the fraction point position of the

results.
Default = 21
#define Activate variable averaging by DSP. If

__CDC_VARIABLE_AVERAGE__ |enabled, A Value != O must be written
to __sub_cdc_dsp_avr__

else declare

CONST __sub_cdc_dsp_avr__ x

where x is the number for DSP
averaging

Output/Return value:

Capacitance ratios CO_ratio, ..., C7_ratio
CDC_BUSY signals if DSP-Averaging is complete (O:=false; 1:=true)

Prerequisites

Declare a constant ONE = 1

Dependency on other
header files

#include <standard.h>

Function call

jsb __sub_cdc__

Temporary memory
usage

O locations - all declared and used in the “__temporary_variables__"
address range given as input parameter by the user.

Changes any RAM
content
permanently?

Yes - 10 locations updated with capacitance ratio results in the
address range specified by the user in __persistent_cdc_first__
CO_ratio

C1_ratio

C2_ratio

C3_ratio

C4_ratio

C5_ratio

5-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

mess-electronic

C6_ratio

C7_ratio
DSP_C_AVR_CNT
CDC_BUSY

54 rdc.h

Function:

Function for Resistance-to-Digital Gonversion. This module contains
the subroutine to determine the resistor ratios.

Input parameters:

__persistent_rdc_first__ address where RDC results are to be
stored
__temporary_variables__

variables

define address space for temporary

Output/Return value:

Resistance ratios RO_ratio, R1_ratio, R2_ratio

Prerequisites

none

Dependency on other
header files

#include <standard.h>

Function call

jsb __sub_rdc__

Switches

#define __SUB_RDC_FPP_x__
where x is the number of fraction (fix point position??) point position
for results RO_ratio to R2_ratio. Default: 21

Temporary memory
usage

1 location - declared and used in the “__temporary_variables__"
address range given as input parameter by the user.

Changes any RAM
content
permanently?

Yes - 3 locations updated with resistance ratio results in the
address range specified by the user in __persistent_rdc_first__
RO_ratio

R1_ratio

R2_ratio

signed24_to_signed48.h

Function:

This function is used to type-cast a 24-bit signed number to 48-bit
signed

value. For use e.g. with values transferred by PARA-Registers to a
full 48-bit signed value.

Input parameters:

Accumulator B = signed 24bit value
__temporary_variables__ define address space for temporary
variables

Output/Return value:

Accumulator B = signed 48bit Value

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

5-5

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

Prerequisites

Dependency on other
header files

Function call

jsb __sub_signed24_to_signed48__

Temporary memory
usage

1 location - declared and used in the “__temporary_variables__"
address range given as input parameter by the user.

Changes any RAM
content
permanently?

Accumulator A is used in this subroutine, it will be overwritten.

5.6 dma.h

Function:

,Direct Memory Access” — This library file contains a subroutine to
copy sequential RAM-content from one address-space to another.
The number of RAM values to be copied can be specified.

Input parameters:

Accumulator B :
DPTR1 :
DPTRO :

number of values to be copied
source RAM block address
destination RAM block address

Output/Return value:

The contents, i.e. the specified number of values are copied from
the source RAM block to the destination RAM block.

Prerequisites none
Dependency on other |-

header files

Function call jsb __sub_dma__

Temporary memory
usage

Changes any RAM
content
permanently?

Yes, the destination RAM block

5-6

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

5.7 pulse.h

mess-electronic

Function:

Linearization function specifically to determine the pulse-output

value:
Accumulator B = __sub_pulse_slope__ * Accu. B +

__sub_pulse_offset__ Return Value is limited by O <= Akku B < 1024

Input parameters:

Accumulator B :
__sub_pulse_slope__
__sub_pulse_offset__ :
__temporary_variables

input value, unsigned, 21 fractional digits
constant factor, signed, 4 fractional digits
constant summand, signed, 1 fractional digit
define address space for temporary variables

Output/Return value:

The pulse output signals are generated

Prerequisites

Declare a constant ONE = 1

Dependency on other
header files

Function call

jsb __sub_pulse__

Temporary memory
usage

1 location - declared and used in the “__temporary_variables__"
address range given as input parameter by the user.

Changes any RAM
content
permanently?

No

5.8 sync.h

Function:

The sync-filter (aka sin(x)/x) or rolling average filter is a filter function
that determines the average for the last N values specified by the user
in “__sub_sync_FilterOrder__ *

Input parameters:

Accumulator B :
__sub_sync_FilterOrder__

input to be filtered
filter order, depth of filtering
address where the filtered results are

__persistent_sync_first__ | stored
: define address space for temporary
__temporary_variables__ |variables

Output/Return value:

The averaged value is passed back in Accumulator B. Additionally the
filtered results are updated in the RAM.

Prerequisites

Declare a constant ONE = 1
Filter must be initialized by -> jsub __sub_sync_initial__

Dependency on other

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

5-7

Member of the ams Group

http://www.acam.de/

PICOCAP®

PCapd2A DSP

header files

Function call

jsb __sub_sync__

Temporary memory
usag

1 location - declared and used in the “__temporary_variables__"
address range given as input parameter by the user.

Changes any RAM
content
permanently?

Yes -BRAM locations updated with filtered results in the address range
specified by the user in __persistent_sync_first__. Number of RAM
locations depends on the filter order.

ringMemFirst : start of filter-memory
ringMemLast : last field of the filter memory
FilterAkku : sum of all memory-fields
currentRingPos : index Pointer; points to the current

memory field

AkkuDivider 27A2 * FilterOrder

5.9 median.h

Function:

This is a quasi-median-filter. With __sub_median_FilterOrder__ the
depth of the memory is defined. Each new Value (X] will be
compared with the current median value,

Is the new value smaller or equal to the median value, the last
value in the list will be replaced by X. Otherwise the first value in

the list will be replaced by X.

Afterwards the complete list is sorted. The value at the very
middle of the list is returnd as a new median.

Input parameters:

Accumulator B :

__sub_ median _FilterOrder__

__persistent_median_first__

__temporary_variables__

__sub_median1_FilterOrder__:
__persistent_median1_first__:

Input to be filtered.

Filter order, depth of filtering
Address where the filtered
values are to be stored
Address space for temporary
variables

Filter order for a second
median Filter address where
the second median filter values
are to be stored

Output/Return value:

The new median is returned in Accumulator B.

Prerequisites

Declare a constant ONE = 1

Dependency on other
header files

Switches #define __sub_median_filter1_enable__
if a second median filter will be used this is the switch to activate
5-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCGD@EA DSP mess-electronic

Function call jsb __sub_median__
jsb __sub_median1__
Temporary memory 2 locations - declared and used in the “__temporary_variables__"
usage address range given as input parameter by the user.
Changes any RAM Yes — RAM locations updated with filtered results in the address
content range specified by the user in __persistent_median_first__.
permanently? Number of RAM locations depends on the filter order.
__sub_median_list_first__ : Start of filter memory
__sub_median_list_middle__ : middle field of the filter memory
__sub_median_list_last__ : last field of the filter memory
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-9

Member of the ams Group

http://www.acam.de/

PICOCAP® PCap@2A DSP

http://www.acam.de/

dESMI

PCapEA DSP mess-electronic

6 Examples

6.1 Standard Firmware, Version 03.01.02

Figure 6-1: Main Loop Flowchart
(Start
v

Set GPIOs

Initiallize (—tru

false

true

CDC RDC
determination determination

Res0=CO_LSB
Resl1..7=C1..7
Res10=RO
Res11=R2

Pulse Interface

v

Reset GPIO Input
Flipflops

Set Interrupt

http://www.acam.de/

PICOCAP® PCap@2A DSP

Code snippets:
a) ldentification of firmware
The following code writes the version of the firmware into a specific address of the program code:

org FW_VERSION
equal FWG_Capacitance + FWT_Standard + 02

b) Check measurement status

These lines check whether measurement data are available or not. If they are, the program jumps
into the sub routines given by the libraries. The CDC writes data alternately into two banks.

Therefore, both banks have to be checked for valid data.

jcd BANKOVALIDN, MK_QUERY_FL1 ;Jump if a CDC result is not yet available in Banké

jsb __sub_cdc__ ;If result available - call subroutine for Capacitor
;to Digital conversion

jsb MK_main
MK_QUERY_FL1: ;Checking if CDC result is available in Bank1
jed BANK1VALIDN, MK_QUERY_FL2 ;Jump if a CDC result is not yet available in Bank1l

jsb _ sub_cdc__ ;If result available - call subroutine for Capacitor
;to Digital conversion

jsb MK_main
MK_QUERY_FL2: ;Checking if temperaure measurement (RDC) 1is running
jed TENDFLAGN, MK_RO_STOP ;Jump if a meas. is still running & RDC result 1is
s;hot yet available
jsb __sub_rdc__ ;If result available - call subroutine Resistor to

;Digital conversion

c) Provide data to read-registers

After the subroutines __sub_cdc__ and __sub_cdc__ have been called, the results in form of
Cs/Cref and Rs/Rref ratios are found in dedicated RAM space. With the following code the
results are copied to the read registers. It is very simple thanks to subroutine __sub_dma__ from

the acam library.

MK_main: ; Copying the CDC result to read-registers
load a, CO_ratio ; Loads the accumulator with first result
rad DPTR1 ; Source address pointer

move r, a

load a, RESo ; First result

rad DPTRO ; Destination address pointer

move r, a

6-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCap@d2A DSP

load

jsb __

rad
move
rad
move
rad
move
rad

move

d) Set the pulse interface

b, 8

sub_dma__

RO_ratio
a, r
RES10

r, a
R2_ratio
a, r
RES11

r, a

mess-electronic

; 8 - No. of locations to be copied

; This copies 8 address contents from the source
;Llocation to the destination Llocation

; Copy the RDC results to the result registers
; Copying only 2 results

The offset and slope of the pulse outputs is typically defined in the parameter registers of
PCapd2.

CONST pulse_select PARA2

CONST pulse_slope6® PARA3
CONST pulse_offsetoPARA4
CONST pulse_slopel PARAS5
CONST pulse_offsetlPARA6

; bits<7..4> - pulsel_select

; bits<3..0> - pulseo_select, add this bits to address CO_ratio

K signed 19 integer + fd4
5 signed 22 integer + fd1
N signed 19 integer + fd4
H signed 22 integer + f1

The following is the calculation of linear function with the given slope and offset and thus scaling

the pulse output to the necessary range.

rad

move

pulse_slope@
b, r

jsb __sub_signed24_to_signed48 _

rad

move

rad

move

Slope
r, b

pulse_offseto
b, r

;5 Slope m

jsb _ sub _signed24 to_signed48 _

rad

move

rad

Offset

r, b ; Offset b

_at_DPTR® ; Getting the result x to be Llinearized

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 6-3

Member of the ams Group

http://www.acam.de/

PICOCAP®

move b, r
clear a

rad Slope
jsb mult_24

rad Offset
add a, r
shiftRa
finally

rad AkkuC

move r, a

jPos MK_Pulse@ GE_Zero
rad AkkuC
sub r, a

move a, r

2

PCapd2A DSP

Calculating m*x, result present in lower 24 bits of a and
; upper 24 bits of b

Taking only result in ‘a’ as final result
Calculating m*x + B

To account for only 1 digit after the decimal point

Scaling to minimum @ : if(a < @) a = @

After the result has been corrected by linearization it has to be clipped to the O to 1023 output

range of the PCap@d2 pulse interface:

MK_Pulse@® GE_Zero:
load2exp b, 10
sub a, b

jNeg MK _Pulse@ s 1024
rad ONE

sub b, r

rad AkkuC

move r, b
MK_Pulse@_s_1024:
rad AkkuC

move b, r

rad PULSE®@

move r, b

Bl

J

B

Scaling to maximum 1023 : if(a >= 1024) a = 1023

; b = 1023

; PCap@2 can output the value at PULSE® output

6-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

[
PCGDQEA DSP mess-electronic

7 Miscellaneous

7.1 Bug Report
7.2 Document History
17.01.2013 First release
16.07.2013 Version O.1 released, section 2.5 GPIO table expanded
16.08.2013 Version 0.2 released, section 3 expanded with new opcodes
- Bitwise operation: not, and, or, xor
- Simple arithmetic: inc
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 7-1

Member of the ams Group

http://www.acam.de/

=10=1

mess+electronic

acam-messelectronic gmbh
Friedrich-List-Stralie 4

76297 Stutensee-Blankenloch
Germany

Phone +49 7244 7419 - O
Fax +49 7244 74189 - 29
E-Mail support@acam.de
www.acam.de

http://www.acam.de/

	ScioSense_Cover_page
	PCAP02 Datasheet - Digital Signal Processor

