

This product, formerly sold by ams AG, and before that optionally by either
Applied Sensors GmbH, acam-messelectronic GmbH or Cambridge CMOS Sensors,
is now owned and sold by

ScioSense

The technical content of this document under ams / Applied Sensors / acam-
messelectronic / Cambridge CMOS Sensors is still valid.

Contact information

Headquarters:

Sciosense B.V.

High Tech Campus 10

5656 AE Eindhoven

The Netherlands

info@sciosense.com

www.sciosense.com

mailto:info@sciosense.com

acam-messelectronic gmbH

is now

Member of the

ams Group

The technical content of this acam-messelectronic document is still valid.

Contact information:

Headquarters:

ams AG

Tobelbaderstrasse 30

8141 Unterpremstaetten, Austria

Tel: +43 (0) 3136 500 0

e-Mail: ams_sales@ams.com

Please visit our website at www.ams.com

®

August 16th, 2013, Version 0.2
Document-No: DB_PCapØ2A_Vol2_en.pdf

Member of the ams Group

® PCapØ2A DSP

 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Publ ished by acam-messelectronic gmbh
©acam-messelectronic gmbh 2013

Disclaimer / Notes
“Preliminary” product information describes a product which is not in full production so

that full information about the product is not available yet. Therefore, acam
messelectronic GmbH (“acam”) reserves the right to modify this product without notice.

The information provided by this data sheet is believed to be accurate and reliable.
However, no responsibility is assumed by acam for its use, nor for any infringements of

patents or other rights of third parties that may result from its use. The information is
subject to change without notice and is provided “as is” without warranty of any kind

(expressed or implied).  is a registered trademark of acam. All other brand and
product names in this document are trademarks or service marks of their respective

owners.

Support / Contact
For a complete listing of Direct Sales, Distributor and Sales Representative contacts, visit
the acam web site at:

http://www.acam.de/sales/distributors/

For technical support you can contact the acam support team in the headquarters in

Germany or the Distributor in your country. The contact details of acam in Germany are:

support@acam.de or by phone +49-7244-74190.

Member of the ams Group

http://www.acam.de/
http://www.acam.de/sales/distributors/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1

Content

1 System Overview .. 1-1

2 DSP & Environment .. 2-1

2.1 RAM Structure .. 2-2

2.2 SRAM / OTP ... 2-9

2.3 DSP Inputs & Outputs ... 2-10

2.4 ALU Flags ... 2-13

2.5 DSPOUT – GPIO Assignment ... 2-15

2.6 DSP Configuration .. 2-18

3 Instruction Set... 3-1

3.1 Instructions ... 3-2

3.2 Instruction Details .. 3-14

4 Assembly Programs ... 4-1

4.1 Directives ... 4-2

4.2 Sample Code ... 4-3

5 Libraries .. 5-1

5.1 standard.h .. 5-2

5.2 PCapØ2a.h ... 5-3

5.3 cdc.h ... 5-4

5.4 rdc.h ... 5-5

5.5 signed24_to_signed48.h ... 5-5

5.6 dma.h .. 5-6

5.7 pulse.h ... 5-7

5.8 sync.h .. 5-7

5.9 median.h .. 5-8

6 Examples .. 6-1

6.1 Standard Firmware, Version 03.01.02 .. 6-1

7 Miscellaneous ... 7-1

7.1 Bug Report ... 7-1

7.2 Document History .. 7-1

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-1

1 System Overview

This volume 2 datasheet describes the 48-DSP of the PCapØ2A. It describes only the

items related to the DSP itself. For all other issues please refer to the volume 1.

A 48-Bit digital signal processor (DSP) in Harvard architecture has been integrated to the

PCapØ2. It is responsible for taking the information from the CDC and RDC measuring

units, for processing the data and making them available to the user interface. Both, the

CDC/RDC raw data as well as the data processed by the DSP are stored in the RAM. The

program for the DSP is stored either in the OTP or the SRAM. The DSP can collect

various status information from a set of 64 I/O Bits and write back 16 of those. This way

the DSP can react on and also control the GPIO pins of PCapØ2. The DSP is internally

clocked at approximately 100 MHz. The internal clock is stopped through a firmware

command, to save power. The DSP can also be clocked by other sources (e.g. a low power

clock). The DSP starts again upon a GPIO signal or an “end of measurement” condition.

In its simplest form, the DSP transfers the pure time measurement information from the

CDC/RDC to the read registers without any further processing (PCapØ2_Raw_values.hex).

The next higher step is to calculate the capacitance ratios including the information from

the compensation measurements, as it is provided in acam’s standard firmware version

PCapØ2_standard.hex.

The DSP is acam proprietary to cover low-power tasks as well as very high data rates. It is

programmed in Assembler. A user-friendly assembler software with a graphical interface,

helptext pop-ups as well as sample code sustain programming efforts.

Figure 1-1 DSP Embedding

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

1-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-1

2 DSP & Environment

The detailed structure of how the DSP is implemented into the PCapØ2 is shown in figure

2-1.

Figure 2-1 DSP Environment

RAM

PARA8
...
PARA0

CDC

2last RAM address
RAM adr. stack

TIMER0
PULSE1
PULSE0

MW16

…

MW00

RES11

...

RES0

Flags / GPIOs

Normal registers 80 x

DSP Read DSP Write

DSP Read/Write

IIC/SPI
Interface

92

...

81

IIC/SPI
Interface

80
79

…

0

ADR

Accu R
48 bit

RAM Address
Pointer

 RAD 6 bit

RAD Stack
4 x

Accu A
48 bit

Accu B
48 bit

ALU
C O S Z

I/O bits, 64 x 1 Input, 16 x 1 Output

Instruction Decoder

Program Memory
(SRAM or OTP)

4k x 8 bit

Program
Counter
 12 bit

PC- Stack
8 x

jc
d

b
it

S/
b

it
C

RDC

GPIOConfiguration registers

Status register

DSP

EE_DATA
DPTR3 / EE_ADD
DPTR2
DPTR1
DPTR0

97
96
95
94
93

TM2
TM1
TM0
TREF

LBD_DATA

101
100

99
98

118

...

102

Reserved
Reserved
PORTINFO
RTC_DATA
ZERO

127
122
121
120
119

EEPROM
128 x 8 bit

This Harvard DSP for 48 bit wide parallel data processing is coupled to a 128 x 48 bit

RAM, 80 x 48 bit thereof free accessible. In read access, the DSP can get the CDC

measurement raw data from address space 102 to 118, the RDC raw data from address

space 98 to 101. By write access the DSP provides the output data to either the serial

interfaces (addresses 81 to 92) or to the PDM/PWM interfaces (addresses 98, 99).

A detailed description of the RAM is given is section 2.1. The DSP operates with two

accumulators A and B and has direct access to the RAM, which can be seen as a third

accumulator. The RAM address pointer is of 6 bit size, and there is a 4-fold stack for

RAM addresses.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The program code for the DSP is in the OTP or the SRAM. During evaluation, the program

is typically in the SRAM. In production it will be in the OTP. For fast applications it is also

possible that after power-on reset the program is copied from the OTP into the SRAM

automatically. The program counter has 12 bit and there is an 8-fold stack for the

program counter.

Finally, the DSP can get a lot of information from the 64 I/O bits. The read information

covers the ALU status, trigger information, some of the configuration bits and the

information about the status of the GPIOs. 16 of those bits can be used as outputs,

setting the GPIOs and also some internal information. For details see section 2.5. The

DSP can read these bits by means of instruction jcd (conditional jump) and set those bits

by means of instructions bitS/bitC (bit Set/Clear).

The ALU flags overflow, carry, equal/not equal and pos./neg. are used directly as

condition for the jcd instructions and are also mirrored in the I/O bits.

2.1 RAM Structure

The RAM plays a key role. It is made of 128 words with size of maximum 48 bit. The DSP

has free write and read access to registers address 80 of those words, all 48 bits wide.

The RAM space addresses 81 to 92 and 98 and higher is different for read and write.

The main data in the read section are the raw data as they come from the CDC and the

RDC as well as the parameters. The parameters are part of the configuration registers

and set via the serial interface or copied from the OTP.

The DSP reads those raw data, does the data processing and writes back the results into

the write section of the RAM. From there, the user can read the final results through the

serial interface.

Some of the RAM cells are dedicated to special functions and will be described in the

following in detail.

Table 2-1 gives a full overview of the RAM write and read registers.

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-3

Table 2-1 RAM Structure in Detail

127 Reserved -

… -

122 Reserved -

121 PORTINFO 24

120 RTC_DATA 16

119 ZERO 48

118 MW16 37

 … 37

102 MW00 37

101 TM2 37

100 TM1 37 100 TIMER0 16

99 TM0 37 99 PULSE1 16

98 TREF 37 98 PULSE0 16

97 EE_DATA 8

96 DPTR3 / EE_ADD 7

95 DPTR2 7

94 DPTR1 7

93 DPTR0 7

92 LBD_DATA 6 92 RES11 24

91 PARA8 24 91 RES10 24

… … 24 … … …

83 PARA0 24 83 RES2 24

82 RAM_adr_Stack 24 82 RES1 48/24

81 2last_RAM_address 48 81 RES0 48/24

80 Flags / GPIO‘s 48

79 Free RAM 48

… … 48

0 Free RAM 48

2.1.1 Registers 0 to 79

This is normal RAM space without any special functions. It is readable and writable via

instruction rad.

Example:

Add content of RAM address 12 and 13 and write the result into RAM address 13

rad 12
move a, r
rad 13
add r, a

This RAM space can be used as a normal register.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

2.1.2 Register 80, Flags & Internal Control Signals

Table 2-2 Flags

0 EE_ON_BY_DSP 0 Disjunction (OR) with EE_ON from CFG

1 CFG_BANK_SEL 0 Switches config Bank for alternated
settings of R_TRIG_SEL, C_TRIG_SEL,

CONV_TIME, C_AVRG

2 C_SELFTEST_BY_DSP 0 Antivalence (XOR) with C_SELFTEST

from config

3 RDCHG_COM_INT_SEL 0 0 := use RDCHG_IN_SEL0

1 := use RDCHG_IN_SEL1

for internal compensation

4..7 free to use 0

8 RST_RDC pulsed Temperature reset. This flag has to be

set 1, after each RDC measurement.
Otherwise a new RDC measurement is

not possible.
This flag is set back to 0 automatically

16..47 free to use unknown

2.1.3 Read Register 81

This register is there to get the N-th power of 2. The exponent N needs to be written to

the RAD stack. The result can be read from register 81. In the assembler, the necessary

three instructions are merged into one:

load2exp a, 10 ; a = 2^10 = 1024

is the same as

rad 10
rad 81
move a, r

A very simple and efficient method to set an accumulator = 1 is

load2exp b, 0 ; b = 2^0 = 1

2.1.4 Read Register 82

This register contains the content of the RAM address stack. The 24 bit data is made of

the 4 last 6-bit RAM addresses. This address can be used to load 24 bit constants from

the program memory into the data space. The necessary 6 instructions are merged into

one single instruction by the assembler.

load a, 1715956 ; a = 1715956

is the same as

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-5

rad ’h06 ; ’h06 * 2^18
rad ’h22 ;+ ’h22 * 2^12
rad ’h3b ;+ ’h3b * 2^6
rad ’h34 ;+ ’h34 = 1715956
rad 82
move a, r

2.1.5 Read Register 83 to 91, Parameters

The content of the configuration registers addresses 50 to 76, the 9 parameters, is

copied into this RAM space and made available to the DSP this way.

The parameters are used to provide variable and firmware specific configuration data.

Typically, e.g. PARAMETER8 is used in the standard firmware and others for the gain

correction factor.

2.1.6 Read Register 92, Low battery detection

This register shows the result of the Low-voltage detection measurement, LBD_DATA. The

value has 6 bit. The result depends on the trim of the Bandgap (recommended = 7).

BG_TRIM1 = 7: Voltage = 2.026 V + LBD_DATA * 24.4 mV

2.1.7 Read/Write Registers 93 to 96, Data Pointer

These registers may be used for indirect addressing. They are 7 bits wide. DPTR3 is

simultaneously used as address pointer for the EEPROM.

Load a register with the address you want to manipulate:

load a, <myaddress>
rad DPTR0
move r, a

load a, <myaddress>
rad 93
move r, a

Load a RAM address pointer with content of DPTR0:

rad _at_DPTR0 ; now ram address pointer is set to content of DPTR0

!! Hint: in the PCapØ2x.h "_at_DPTR0" to "_at_DPTR3" are set to values of 284 to 287.

These are no valid RAM addresses but just indicators to the assembler to generate the

corresponding opcodes.

Example direct memory address: Copy a memory block from one address to another:

__sub_dma__:
not b
inc b
__sub_dma_loop__:
rad _at_DPTR1

; DPTR1 := source_address; DPTR0 :=

destination address; b:= length of dma

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

move a, r
rad _at_DPTR0
move r, a

rad DPTR0
inc r
rad DPTR1
inc r
inc b

jNE __sub_dma_loop__
jrt

2.1.8 Read/Write Register 97, EEPROM DATA

This register named EE_DATA is used to write or read data to or from EEPROM.

To read data from the EEPROM the read address has to be written to DPTR3/EE_ADD,

register 96 and a read strobe (bitS EE_RD) must be generated. The DSP has to wait until

the data on Register 97 are valid. Afterwards, the value can be fetched from register 97:

load a, <myaddress>
rad EE_ADD
move r, a
bitS EE_RD

while_ee_rd_loop:
jcd EE_BUSY while_ee_rd_loop

rad EE_DATA
move a, r

For writing into the EEPROM it has to be activated and the EE_WR_EN has to be set.

To write to the EEPROM the address has to be loaded to DPTR3/ EE_ADD (register 96)

and the value has to be written to EE_DATA (register 97). No further action is necessary.

Before each write-process ensure that the EEPROM is ready.

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-7

To erase the EEPROM it has to be activated and writing has to be enabled. To erase a

databyte, the address has to be set to DPTR3/EE_ADD (Register 96) and an erase-pulse

has to be generated (bitS EE_ER).

load2exp a, EE_ON
rad FLAGREG
or r, a

load a, <myaddress>
rad EE_ADD
move r, a

while_ee_busy:
jcd_EE_BUSY, while_ee_busy

bitS EE_ER

while_ee_erasing:
jcd EE_BUSY, while_ee_erasing

load b, <mycontent>

rad EE_DATA
move r, b

while ee_writing:
jcd EE_BUSY, while ee_writing

load2exp a, EE_ON
not a
rad FLAGREG
and r, a

2.1.9 Read Register 98 to 101, RDC Results

Those register hold the resistance discharge time measurement raw data of 37 bit. The

will be used by library rdc.h to calculate the resistance ratios.

2.1.10 Read Registers 102 to 118, CDC Results

Those register hold the capacitance discharge time measurement raw data of 37 bit. The

will be used by library cdc.h to calculate the resistance ratios, taking into account the

compensation methods selected.

2.1.11 Read Register 119, ZERO

This register a default zero value for easy programming.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

2.1.12 Read Register 120, RTC_DATA

There is a real time counter which can be used to have long-term timing information. The

used demands an external 32.768 kHz oscillator. The RTC is a Gray-counter with 217 pre-

divider, which gives a base period of 4 seconds and a measurement range of 3 days and

49 minutes. The count is given in Gray-code. Library file gray2bin.h supports the

conversion into binary data format.

2.1.13 Read Register 121, PORTINFO

The low 8 bits mirror the port enable setting as defined by configuration parameter

C_PORT_EN in register 12.

Bits 8 to 17 are error flags for the capacitance ports including the internal reference

ports.

2.1.14 Write Registers 81 to 92

These are the result registers to which the DSP has to write the output data so that the

user can read those through the SPI/IIC interface as Res 0 to Res 7.

Addresses 81 and 82 are 48 bit, while the others are 24 bit wide only.

 These Registers are write only! You can’t read from these Registers!

2.1.15 Write Registers 98, 99

These registers contain the data that is used to generate the PWM/PDM output signals.

After the DSP has calculated and scaled the output data, it writes those into these two

registers. The data are 14 bit wide.

2.1.16 Write Register 100, TIMER0

The DSP has a 16bit Timer based on the OLF clock. This Timer may be used to generate

long delays while the DSP is halted. Bit #1 (timer) in DSP_START_EN must be set!

By writing a value to Register 100 the timer starts to count up from 0 each OLF -clock

cycle until the written value has been reached. Then a DSP_START_TRIG is generated.

If the DSP is not halted the TIMER0_IRQ_N Flag could be tested anyway.

Example 1 (without halting DSP):

CONST wait_time_1ms 50 ; 50*20µs (@50kHz)
…
load a, wait_time
rad TIMER0
move r, a

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-9

timer_wait_loop:
jcd TIMER0_IRQ_N, timer_wait_loop

Example 2 (with halting DSP, DSP run on internal oscillator)

CONST wait_time_1ms 50 ; 50*20µs (@50kHz)
…
ORG 0
jcd TIMER0_IRQ_N, Skip_Timer0_process
 jsb Triggered_by_Timer0
Skip_Timer0_process:
…
load a, wait_time
rad TIMER0
move r, a
stop

Triggered_by_Timer0:
…

2.2 SRAM / OTP

Table 2-3 Memory organization

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

2.2.1 Memory Management

The DSP can be operated from SRAM (for maximum speed, 100 MHz max.) or from OTP

(for low power, 10 MHz max. with error correction, 40 MHz max. without error

correction). When the firmware has been copied from the OTP into the SRAM and the

DSP runs from the SRAM, it is possible to use an SRAM-to-OTP data integrity monitor. It

can be activated setting parameter MEMCOMP in register 0. This has to be disabled for

operation directly from the OTP and needs the DSP to run with the internal ring oscillator.

Memory integrity (“ECC”) mechanisms survey the OTP contents internally and correct faulty

bits (as far as possible).

MEMLOCK, the memory readout blocker, is activated by special OTP settings performed

when loading down the firmware (see the graphi­cal user interface existing for firmware

development). MEMLOCK contributes to the protection of your intellectual property.

MEMLOCK gets active earliest after it was written to the OTP and the chip got a power -on

reset. MEMLOCK is write-only, it can’t be set back.

2.2.2 OTP

The PCapØ2 is equipped with a 4 kB permanent program memory space, which is one-

time programmable, called the OTP memory. In fact, the OTP is total 8 kB in size but 4 kB

are used for ECC mechanism (error correction code). The default state of all the bits of

the OTP memory in an un-programmed state is ’high’ or 1. Programming a bit means

changing its state from High to Low. Once a bit is programmed to 0, it cannot be

programmed back to 1. Data retention is given for 10 years at 95°C. MEMLOCK is

fourfold protected.

2.3 DSP Inputs & Outputs

The DSP has access to 64 bits of information on ALU status, start trigger, configuration,

input/output pins.

This information can be interpreted by means of instruction jcd, conditional jump.

Instruction conditional jump:

jcd p1,p2: if p1 ==1 then jump to p2
16 of those bits can be set by the DSP, e.g. to set a GPIO or to select between RDC and

CDC data. The bits are controlled by means of instructions bitS/bitC (bit Set/bit Clear).

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-11

Table 2-4 DSP Inputs/Outputs

DSP_OUT<7…0> Status feedback of the 8 general DSP outputs
(Write bits 0 to 7).

IN 56 to 63

SPI_TRIGGERED_N Flag = LOW indicates that a falling edge at a pin

or an SPI/IIC opcode has started the DSP. This
flag is reset by a STOP instruction at the end of
the firmware.

Start trigger 55

PIN_TRIGGERED_N Flag = LOW indicates a GPIO has started the
DSP

 53

TDC_OVFL_TRIGGERED_N* Flag = LOW indicates that a TDC overflow has

started the DSP. This flag is reset by a STOP
instruction at the end of the firmware.

Start trigger 52

INTN_TRIGGERED_N Flag = LOW indicates the DSP is started by rising

edge of INTN-Signal

Start trigger 51

RDC_TRIGGERED_N * Flag = LOW indicates that an RDC measurement
has started the DSP. Therefore,

DSP_STARTONTEMP has to be set (configuration
register 8). This flag is reset by a STOP
instruction at the end of the firmware.

Start trigger 50

TIMER0_IRQ_N Flag = LOW indicates the DSP is started by the
internal timer

Start trigger 49

CDC_TRIGGERED_N Indicates the DSP is started by the end of the

capacitance conversion.

Start trigger 48

ALU_OFL_N ALU flags for overflow, carry, equal and sign.
The ALU flags are used by the jump instruction of

the assembler

Status 47

ALU_OFL Status 46

ALU_CAR_N Status 45

ALU_CAR Status 44

ALU_EQ Status 43

ALU_NE Status 42

ALU_POS Status 41

POR_FLAG_Wdog status bit 7 Status 28

POR_FLAG_CONFIG_N status bit 6 Status 27

POR_FLAG_SRAM_N status bit 5 Status 26

TIMER0_Busy Indicates that timer0 is still running Status 25

DCHG_DUM_EN Config Reg 19

MR2_N Indicates whether measure mode 2 is set or not.
0 = MR2, 1 = MR1

Config Reg 18

C_COMP_FORCE_N Config Reg 17

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

C_COMP_R_N Config Reg 16

C_COMP_EXT_N Config Reg 15

C_COMP_IN_N Config Reg 14

C_SINGLE /

C_DIFFERENTIAL_N

 Config Reg 13

C_GROUNDED /
C_FLOATING_N

 Config Reg 12

TRIG_BG This parameter starts the Bandgap (to
synchronize with measurement) (pulse,
automatically set to 0)

Out 15

TRIG_LBD This parameter starts the "Low Bat Detection"
(pulse, automatically set to 0)

Out 14

EE_ER EEPROM erase strobe (pulse, automatically set
to 0)

Out 13

EE_RD EEPROM read strobe (pulse, automatically set to

0)

Out 12

ERR_OVFLN Flag = bit 16 of status register. Indicates an
overflow or other error in the CDC.

Status 11

COMB_ERRN Flag = bit 16 of status register. This is a
combined condition of all known error conditions.

Status 10

CYC_ACTIVEN Flag = bit 23 of status register. Indicates that

the CDC frontend is active.

Status 9

LBD_BUSY Indicates Low-Bat-Detection is busy Status 8

EE_BUSY Indicates, EEPROM is busy Status 7

Interrupt_In Port INTN will be reseted by a positive edge on
SSN (SPI) or a stop condition (I2C), whit this the
current status of INTN could be detected

 6

TEMPERRN Flag = bit 3 of status register. Indicates whether
an error occurred during the temperature
measurement. 0 = error, 1 = no error

Status 5

RDC_BUSY Flag = bit 22?? of status register. Indicates RDC
unit is busy. 0 = measurement done, 1 =
measurement running.

Status 4

Interrupt_Out Sets the interrupt (pin INTN) (pulse, automatically
set to 0)

Out 11

(PAGE) Reserved, do not use Out 10

TRIG_RDC This bit starts a new RDC measurement.
(pulsed, automatically set to 0)

Out 9

TRIG_CDC This bit starts a new CDC measurement (pulsed,

automatically set to 0)

Out 8

DSP_7 Those two outputs are used by the DSP for Out 7

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-13

DSP_6 - Reset watchdog (DSP_7)

- INI_RESET by DSP (DSP_6)

Out 6

DSP_5 Sets the general purpose output pin PG5 Out 5

DSP_4 Sets the general purpose output pin PG4 Out 4

DSP_3 When the Pulse1 is switched OFF then this bit
can be used to set and clear the general
purpose output pin PG3. When the Pulse1 is ON

then this bit must be cleared so that the Pulse1
output appears on PG3.

In/Out 3 3

DSP_2 When the Pulse0 is switched OFF then this bit

can be used to set and clear the general
purpose output pin PG2. When the Pulse0 is ON
then this bit must be cleared so that the Pulse0

output appears on PG2

In/Out 2 2

DSP_1 Set or read the general purpose I/Os at pins

PG0 & PG1. The assignment is programmable
and shown in detail below.

In/Out 1 1

DSP_0 In/Out 0 0

* A positive edge on those inputs start the DSP. The status of the start trigger is

memorized till the next reset or stop of the DSP. The start trigger information can be read

from inputs 32 to 36 by jcd.

2.4 ALU Flags

With each ALU operation flags are set. The ALU has four flags: overflow, carry, equal and

sign. The following table shows an overview:

Table 2-5 ALU Flags

ON No Overflow signed add, sub, mult, div jOvlC, jOvlS >= -247 and <= 247 - 1

O Overflow < -247 and > 247 – 1

CN No Carry* unsigned add, sub, mult, div jCarC, jCarS < 248

C Carry* >= 248

Z Equal / Zero signed /

unsigned

add, sub, mult, div,

move, shiftL, shiftR

jEQ, jNE == 0

ZN Not Equal / not
Zero

!=0

S Positive signed add, sub, mult, div,

move, shiftL, shiftR

jPos, jNeg >= 0

SN Negative < 0

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

* During addition, the carry C is set when a carry-over takes place from the most

significant bit, else C remains at 0.

During subtraction, carry C is by default 1. Carry C is cleared only when the minuend <

subtrahend.

E.g. for A - B: if A ≥ B  C = 1; if A < B  C = 0.

In other words, the carry C is actually the status of the carry of the addition operation A+

2‘s complement (B).

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-15

2.5 DSPOUT – GPIO Assignment

PCapØ2 is very flexible with assignment of the various GPIO pins to the DSP

inputs/outputs. The following table shows the possible combinations.

Table 2-6 Pin Assignment

PG0 SSN (in SPI-Mode) in

DSP_x_0 or DSP_x_2 in* / out

FF0 or FF2 in*

Pulse0 out

PG1 MISO (in SPI-Mode) out

DSP_x_1 or DSP_x_3 in* / out

FF1 or FF3 in*

Pulse1 out

PG2 DSP_x_0 or DSP_x_2 in* / out

FF0 or FF2 in*

Pulse0 out

INTN out

PG3 DSP_x_1 or DSP_x_3 in* / out

FF1 or FF3 in*

Pulse1 out

PG4 DSP_OUT_4
(output only)

out

PG5 DSP_OUT_5
(output only)

out

* These ports provide an optional debouncing filter and an optional pull -up resistor.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Figure 2-2 GPIO Assignment

Pullup

~40ms

IN|OUT

IN|OUT|INTN

DSP_OUT_1

FF3

DSP_OUT_3

DSP_IN_3
PG_DIR_IN

P
G
_
P
U

DSP_MOFLO_EN1

P
G

1
xP

G
3

 (
=0

)

PULSE1

PG1

(MISO)

PG3

DSP_FF_IN1

0

1D1

FF1

DSP_IN_1

0

1D1D

DSP_FF_IN3

Pullup

~40ms

IN|OUT

IN|OUT|INTN

DSP_OUT_0

FF2

DSP_OUT_2

DSP_IN_2
PG_DIR_IN

P
G
_
P
U

DSP_MOFLO_EN0

P
G

0
xP

G
2

 (
=0

)

PULSE0

PG0

(SSN)

PG2

DSP_FF_IN0

0

1D1

FF0

DSP_IN_0

0

1D1D

DSP_FF_IN2

DSP_OUT_4OUTPG4

DSP_OUT_5OUTPG5

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-17

Figure 2-3 Port trigger timing

There is a possibility to activate a 40 ms debounce filter (“monoflop“) for the ports in case

these are used as inputs. This might be useful especially in case the DSP is started by the

pins (signals FF0, FF2). Figure 2-3 shows the effect of the monoflop filter.

The settings herefore are made in configuration registers 8 and 9. The relevant

parameters are:

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Table 2-7

Parameter Description Settings

INT2PG2 Useful with QFN24 packages, where

no INTN pin is available. Permits
rerouting the interrupt signal to the

PG2 port. If INT2PG2 =1 then all
other settings for PG2 are ignored.

PG1_X_G3 The pulse codes can be output at
ports PGØ & PG1 or PG2 & PG3. In

I2C mode of communication, they can
be optionally given out on PG2 and

PG3, instead of PGØ and PG1.

0 = PG1
1 = PG3

PG0_X_G2 0 = PG0
1 = PG2

PG_DIR_IN toggles outputs to inputs (PG3/bit23

to PG0/bit20).

0 = output

1 = input

PG_PULL_UP Activates pull-up resistors in PG0 to

PG3 lines; useful for mechanical
switches.

Bit 16 = PG0

Bit 17 = PG1
Bit 18 = PG2

Bit 19 = PG3

DSP_FF_IN Pin mask for latching flip-flop
activation

Bit 12 = PG0
Bit 13 = PG1

Bit 14 = PG2
Bit 15 = PG3

DSP_MOFLO_EN Activates anti-bouncing filter in PG0
and PG1 lines

Bit 9 for PG1
Bit 8 for PG0

2.6 DSP Configuration

The configuration of the DSP is done in configuration register 8. Relevant bits are:

DSP_SRAM_SEL, DSP_START, DSP_STARTONOVL, DSP_STARTONTEMP, DSP_STARTPIN,

DSP_WATCHDOG_LENGTH, DSP_SPEED

Table 2-8

DSP_SRAM_SEL Selects the program memory for the
processor

0 = OTP
1 = SRAM

DSP_START Startbit. Command for the
processor; processor clock is

started, program counter jumps to
address zero and processing begins.

After firmware completion, DSP
stops its own clock!

As the DSP is triggered by rising

01(rising edge) = start
DSP

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-19

edge, this bit is to be set ‘0’ first and

then ‘1’.

DSP_START_EN<4..0> see Vol1

DSP_STARTPIN Pin mask for DSP trigger 0 = FF0
1 = FF1

2 = FF2
3 = FF3

DSP_SPEED Setting the DSP speed 1 = Standard (fast)
3 = Low-current (slow)

There are various options to trigger the DSP.

In slave operation:

 Trigger by external controller. This is done by successive clearing and setting the

startbit DSP_START in configuration register 8.

In stand-alone operation:

 Trigger by pin. The trigger pin is selected between pins PG0 to PG3 by

configuration parameters DSP_STARTPIN and PG0_X_PG2/PG1_X_PG3. Signal FFx

triggers the DSP. FFx has to be reset in the firmware by setting DSP_x, e.g.

BitS DSP_2

BitC DSP_2

 Trigger by the end of a temperature measurement. This option is selected by

configuration bit DSP_STARTONTEMP and is recommended for stand-alone

operation with temperature measurement.

 Trigger on error. This option is enabled by setting configuration bit

DSP_STARTONOVL. It should be used only if error handling is implemented in the

software.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

2-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The watchdog is (now) based on the constant clock (5 kHz) and counts always, even if the

DSP is halted. If the DSP doesn't reset the Watchdog within the configured watchdog time

a power-on reset is generated => auto-boot. Status Flag POR_FLAG_Wdog is set.

The watchdog is implemented to handle situations where no CDC or RDC is running.

In slave applications the watchdog should be disabled. If the watchdog is used disarm the

watchdog in advance to any SIF-Communication.

In case the PCapØ2 is operated as a slave, not in self-boot mode, it is necessary to do the

following actions after applying power:

1. Send opcode Power-up Reset via the serial interface, opcode ’h88.

2. Write the firmware into the SRAM by means of opcode “Write to SRAM“.

3. Write the configuration registers by means of opcode “Write Config”. Register 20

with the RUNBIT has to be the last one in order.

4. Send a partial reset, opcode ’h8A

5. Send a start command, opcode ’h8C

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-1

3 Instruction Set

The complete instruction set of the PCapØ2 consists of 29 core instructions that have unique op-

code decoded by the CPU. Further, acam offers a set of libraries including common constant

definitions and mathematical operations

The library family is intended to be continuously expanded and be a great help during software development.

Table 3-1 Instruction set

add resetWDG rad not

sign powerOnReset clear and

sub nop load or

inc stop load2exp xor

 move

div shiftL jsb bitC

mult shiftR jrt bitS

jcd

jCarC

jCarS

jEQ

jNE

jNeg

jOflC

jOflS

jPOS

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

3.1 Instructions

Syntax: and p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]

p1 != p2

Calculus: p1 := p1 & p2

Flags affected: C O S Z

Bytes: 1

Description: Bitwise AND (conjunction)

Category: Bitwise operation

Syntax: add p1,p2

Parameters: p1 = ACCU [a,b,r]

p2 = ACCU [a,b,r]

Calculus: p1 := p1 + p2

Flags affected: C O S Z

Bytes: 1

Description: Addition of two registers

Category: Simple arithmetic

Syntax: bitC p1

Parameters: p1 = number 0 to 15

Calculus: Set bit number p1 of the DSP output bits bit = 1

Flags affected: -

Bytes: 1

Description: Clear a single bit in the DSP output bits

Category: Bitwise

Syntax: bitS p1

Parameters: p1 = number 0 to 15

Calculus: Set bit number p1 of the DSP output bits bit = 1

Flags affected: -

Bytes: 1

Description: Set a single bit in the DSP output bits

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-3

Category: Bitwise

Syntax: clear p1

Parameters: p1 = ACCU [a,b,r]

Calculus: p1 := 0

Flags affected: S Z

Bytes: 2

Description: Clear addressed register to 0

Category: RAM access

Syntax: div

Parameters: -

Calculus: Single div code: b := (a/r), a := Remainder * 2

N div codes: b := (a/r)*2^(N-1), a := Remainder * (2^N)

Flags affected: S Z

Bytes: 1

Description: Unsigned division of two 48-bits registers. When the div opcode is used

once, the resulting quotient is assigned to register ’b’. The remainder can
be calculated from ‘a’.

When N div opcodes are used one after another, the result in b :=
(a/r)*2^(N-1).

Before executing the first division step, the following conditions must be
satisfied:

’b’ = 0, and 0<’a’<2*’r’.
If this condition is not satisfied, you can shift ‘a’ until this is satisfied. After

shifting, if a -> a* (2^ea) and r -> r* (2^er), then the resulting quotient b
for N division steps is

b:= (a/r) * 2^(1+ea-er-N)
a = Remainder * (2^N)

Category: Complex arithmetic

Syntax: inc p1

Parameters: p1 = ACCU [a,b,r]

Calculus: p1 := p1 + 1

Flags affected: C O S Z

Bytes: 1

Description: Increment register

Category: Simple arithmetic

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: jCarC p1

Parameters: p1 = jumplabel

Calculus: if (carry == 0) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on carry clear. Program counter will be set to target address if

carry is clear. The target address is given by using a jumplabel. The
conditional jump does not serve the stack. Therefore it is not possible to

return by jrt.
If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the

following optimization:
jCarS new_label
jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

Syntax: jCarS p1

Parameters: p1 = jumplabel

Calculus: if (carry == 1) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on carry set. Program counter will be set to target address if carry
is set. The target address is given by using a jumplabel. The conditional

jump does not serve the stack. Therefore it is not possible to return by jrt.
If the target address is beyond the range of current address (PC) +-128

bytes, then the assembler software will substitute this opcode for the
following optimization:
jCarSC new_label
jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack

capacity will be reduced by one.

Category: Conditional jump

Syntax: jcd p1, p2

Parameters: p1 = Flag or input port bit [63...0]. See section 2.3 for DSP Inputs.

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-5

p2 = jumplabel

Calculus: If (p1 == 1) PC := p2

Flags affected: -

Bytes: 2

Description: Program counter is set to target address if the bit given by p1 is set to

one. The target address is given by using a jumplabel. The conditional jump
does not serve the stack. Therefore it is not possible to return by jrt.

Category: Conditional jump

Syntax: jEQ p1

Parameters: p1 = jumplabel

Calculus: if (Z == 0) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on equal zero. Program counter will be set to target address if the
foregoing result is equal to zero. The target address is given by using a

jumplabel. The conditional jump does not serve the stack. Therefore it is
not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the

following optimization:
jNE new_label
jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

Syntax: jNE p1

Parameters: p1 = jumplabel

Calculus: if (Z == 1) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on not equal to zero. Program counter will be set to target address
if the foregoing result is not equal to zero. The target address is given by

using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the

following optimization:
jEQ new_label

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack

capacity will be reduced by one.

Category: Conditional jump

Syntax: jNeg p1

Parameters: p1 = jumplabel

Calculus: if (S == 1) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on negative. Program counter will be set to target address if the
foregoing result is negative. The target address is given by using a

jumplabel.
If the target address is beyond the range of current address (PC) +-128

bytes, then the assembler software will substitute this opcode for the
following optimization:
jPos new_label
jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

Syntax: jOvlC p1

Parameters: p1 = jumplabel

Calculus: if (O == 0) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on overflow clear. Program counter will be set to target address if
the overflow flag of the foregoing operation is clear. The target address is

given by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the

following optimization:
jOflS new_label
jsb p1
jrt

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-7

new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack

capacity will be reduced by one.

Category: Conditional jump

Syntax: jOvlC p1

Parameters: p1 = jumplabel

Calculus: if (O == 1) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on overflow set. Program counter will be set to target address if the
overflow flag of the foregoing operation is set. The target address is given

by using a jumplabel. The conditional jump does not serve the stack.
Therefore it is not possible to return by jrt.

If the target address is beyond the range of current address (PC) +-128
bytes, then the assembler software will substitute this opcode for the

following optimization:
jOflC new_label
jsb p1
jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack

capacity will be reduced by one.

Category: Conditional jump

Syntax: jPos p1

Parameters: p1 = jumplabel

Calculus: if (S == 0) PC := p1

Flags affected: -

Bytes: 2

Description: Jump on positive. Program counter will be set to target address if the

foregoing result is positive. The target address is given by using a
jumplabel. The conditional jump does not serve the stack. Therefore it is

not possible to return by jrt.
If the target address is beyond the range of current address (PC) +-128

bytes, then the assembler software will substitute this opcode for the
following optimization:
jNeg new_label
jsb p1

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

jrt
new_label: ….........
In this case the stack will be loaded with p1, and therefore the stack
capacity will be reduced by one.

Category: Conditional jump

Syntax: jrt

Parameters: -

Calculus: PC := PC from jsub-call

Flags affected: -

Bytes: 1

Description: Return from subroutine. A subroutine can be called via ‘jsb’ and exited by
using jrt. The program is continued at the next command following the jsb -

call. You have to close a subroutine with jrt - otherwise there will be no
jump back.

The stack is decremented by 1.

Category: Unconditional Jump

Syntax: jsb p1

Parameters: p1 = jumplabel

Calculus: PC := PC from jsub-call

Flags affected: -

Bytes: 2

Description: Jump to subroutine without condition. The programm counter is loaded by

the address given through the jumplabel. The subroutine is processed until
the keyword ‘jrt’ occurs. Then a jump back is performed and the next

command after the jsub-call is executed. This opcode needs temporarily a
place in the program counter stack (explanation see below).

The stack is incremented by 1.

Category: Unconditional Jump

Syntax: load p1,p2

Parameters: p1 = ACCU [a,b]
p2 = 24-bit number

Calculus: p1 := p2

Flags affected: S Z

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-9

Bytes: 6

Description: Move constant to p1 (p1=ACCU, p2=NUMBER)
The following instruction is not allowed:

load r, NUMBER
This instruction is a macro that is replaced by the following opcodes:
rad NUMBER[23:18]
rad NUMBER[17:12]
rad NUMBER[11:6]
rad NUMBER[5:0]
rad 63
move [a, b], r
Here the 24-bits number is split into four pieces, the symbol [xx:yy]

indicates the individual bit range belonging to each piece. Please notice
that the ram address pointer is changed during the operations, keep this

in mind while coding.

Category: RAM access

Syntax: load2exp p1,p2

Parameters: p1 = ACCU [a,b]

p2 = 6-bit number

Calculus: p1 := 2^p2

Flags affected: S Z

Bytes: 2

Description: Move 2^(p2) to p1(p1=ACCU, p2=NUMBER)

The following instruction is not allowed:
load r, NUMBER
This instruction is a macro that is replaced by the following opcodes:
rad NUMBER[5:0]
rad 62
move [a, b], r

Category: RAM access

Syntax: move p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]

Calculus: p1 := p2

Flags affected: S Z

Bytes: 1

Description: Move content of p2 to p1

Category: RAM access

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: mult

Parameters: -

Calculus: ab := (b * r)

Flags affected: S Z

Bytes: 1

Description: Unsigned multiplication of the content of ab and r registers.
ab is the composition of the registers a and b, forming an 96-bits long

register, where ‘a’ takes the most significant bits, and register ’b’ takes
the less significant ones.

The result is stored in the composed register a and b. The register ‘a’
must be previously cleared.
This instruction only executes one multiplication step, to execute a full 48-

bits multiplication, this instruction must be executed 48 times. This has
the disadvantage of being tedious to code, but also has the advantage of

executing only the amount of arithmetic needed, if you don’t need a 48-bits
multiplication but N, where N<48, then you have only to execute N

multiplication steps in order to complete the full N-bits multiplication.
After one multiplication step, register ‘a’ contains ((a+(b[0]*r))>>1), and

register ’b’ contains { a[0], b[47:1] }. For example: lets denote the
individual bits of register ‘a’ as a[47], a[46], a[45]......a[2], a[1], a[0], and

lets denote a range of bits of ‘a’ as: a[3:0], meaning the 4 less significant
bits of register ‘a’.

Then, after one multiplication step, a[46:0] = (a[47:0] + r[47:0] * b[0]) >>
1, where >> 1, means right shift by one position; the value of a[47] is

zero, and b[47] = (a[0] + r[0] * b[0]), and b[46:0] = b[47:1]. The register
r remains unchanged.

Category: Complex arithmetic

Syntax: -

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Description: Placeholder code or timing adjust (no function)

Category: Miscellaneous

Syntax: not p1

Parameters: p1 = ACCU [a,b,r]

Calculus: p1 := ~ p1

Flags affected: C O S Z

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-11

Bytes: 1

Description: Invert register

Category: Bitwise operation

Syntax: or p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]

p1 != p2

Calculus: p1 := p1 | p2

Flags affected: C O S Z

Bytes: 1

Description: Bitwise OR (disjunction)

Category: Bitwise operation

Syntax: powerOnReset

Parameters: -

Calculus: -

Flags affected: S Z

Bytes: 5

Description: This is a symbolic opcode which is equivalent to the following

instruction sequence:
bitC 54
bitC 55
bitS 55
bitS 54
bitC 55

Category: Miscellaneous

Syntax: rad p1

Parameters: p1 = NUMBER [6-bit]

Calculus: -

Flags affected: 1

Bytes: 1

Description: Set pointer to ramaddress (range: 0..63)

Note:
rad _at_DPTR0 and rad _at_DPTR1 are instructions that will be seen

in the firmware. With these opcodes, the address in the Data Pointer
(DPTR0 &1 at RAM address 44 and 45) is taken as the address for

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

the RAM address pointer. _at_DPTR0 is at address 285, _at_DPTR1
is at address 287.
rad _at_DPTR0
move a, r
will move the contents of the address stored in DPTR0 to the A
register.

See also section 3.2.1.

Category: RAM access

Syntax: resetWDG

Parameters: -

Calculus: -

Flags affected: -

Bytes: 5

Description: Clear watchdog timer.

This is a symbolic opcode which is equivalent to the following
instruction sequence:
bitC 54
bitC 55
bitS 54
bitS 55
bitC 54

Category: Miscellaneous

Syntax: shiftL p1

Parameters: p1 = ACCU [a, b]

Calculus: p1 := p1<< 1

Flags affected: S Z

Bytes: 1

Description: Shift p1 left --> shift p1 register to the left, fill LSB with 0, MSB is
placed in carry register

Category: Shift and rotate

Syntax: shiftR p1

Parameters: p1 = ACCU [a, b]

Calculus: p1 := p1>> 1

Flags affected: S Z

Bytes: 1

Description: Signed shift right of p1 --> shift p1 right, MSB is duplicated according

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-13

to whether the number is positive or negative

Category: Shift and rotate

Syntax: sign p1

Parameters: p1 = ACCU [a,b]

Calculus: When S = 0 => p1 := |p1|, S := (1 - p1/|p1|)/2

When S = 1 => p1 := - |p1|, S := (1 - p1/|p1|)/2

Flags affected: S Z

Bytes: 1

Description: The Signum flag takes the sign of accumulator, 0 when positive or 1

when negative.
The accumulator changes its sign after the execution of this opcode, if

and only if the Signum flag (before the execution) is 1.
Zero is assumed to be positive.

Category: Simple arithmetic

Syntax: stop

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Description: Stop of the PCAP-Controller. The clock generator is stopped, the
PCAP-Controller and the OTP go to standby. A restart can be achieved

by an external event like ‘watchdog timer’, ‘external switch’ or ‘new
capacitive measurement results’. Usually this opcode is the last

command in the assembler listing.

Category: Miscellaneous

Syntax: sub p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]

Calculus: p1:= p1 – p2

Flags affected: C O S Z

Bytes: 1

Description: Subtraction of 2 registers.
The following instructions are not allowed: add a,a. add b,b. add r,r

Category: Simple arithmetic

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: xor p1,p2

Parameters: p1 = ACCU [a,b,r]
p2 = ACCU [a,b,r]

p1 != p2

Calculus: p1 := p1 ^ p2

Flags affected: C O S Z

Bytes: 1

Description: Bitwise XOR (antivalence)

Category: Bitwise operation

3.2 Instruction Details

3.2.1 rad

Sets the RAM address. Typical example:

rad 12

move a, r

Pointer

rad _at_DPTR0 and rad _at_DPTR1 are special instructions for indirect addressing. _at_DPTR0

and _at_DPTR1 are special RAM addresses 285 and 287 that have been defined in the firmware.

RAM addresses 44 and 45 are used as data pointers, named DPTR0 and DTPTR1.

By means of

rad DPTR0

move r, a

an address is loaded into DPTR0. With

rad _at_DPTR0

the address in DPTR0 is loaded.

Example: copy sequently RAM-content from one address-space to another

load a, C0_ratio

rad DPTR1

move r, a

load a, RES0

rad DPTR0

move r, a

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-15

load b, 8

jsb __sub_dma__

__sub_dma__:

; DPTR1 := source_address

; DPTR0 := destination address

; b:= length of dma

rad _at_DPTR1

move a, r

rad _at_DPTR0

move r, a

rad ONE

move a, r

rad DPTR0

add r, a

rad DPTR1

add r, a

sub b, a

jNE __sub_dma__

jrt

#endif

3.2.2 mult

The instruction “mult” is just a single multiplication step. To do a complete 48-bit multiplication this

instruction has to be done 48 times. The multiplicands are in accumulators b and r. Every step

takes the lowest bit of b. If it is one, r is added to accumulator a, else nothing is added.

Thereafter a and b are shifted right. The lowest bit of a becomes the highest bit of b. Before the

first step of the multiplication, a has to be cleared. The final result is spread over both

accumulators a and b.

The use of mult is simplified by using the standard.h library. This library includes function calls for

multiplications with arbitrary number of multiplication steps. E.g., a call of function mult_24 will do

a 24-step multiplication.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Example 1: r= 5, b=5; 48-bit integer multiplication

Steps a b r

 ’b0..0000 ’b000000..000101 ’b0..0101 b= 5; r = 5

1 +,



’b0..0010 ’b100000..000010 ’b0..0101 r is added to a, a & b
shifted right

2  ’b0..0001 ’b010000..000001 ’b0..0101 a & b shifted right

3 +,



’b0..0011 ’b001000..000000 ’b0..0101 r is added to a, a & b

shifted right

4  ’b0..0001 ’b100100..000000 ’b0..0101 a & b shifted right

5  ’b0..0000 ’b110010..000000 ’b0..0101 a & b shifted right

6  ’b0..0000 ’b011001..000000 ’b0..0101 a & b shifted right

47  ’b0..0000 ’b000000.0100110 ’b0..0101 a & b shifted right

48  ’b0..0000 ’b000000..010011 ’b0..0101 a & b shifted right

In many cases it will not be necessary to do the full 48 multiplication steps but much fewer. The

necessary number of steps is given by the number of significant bits of b and also the necessary

significant number of bits of the result.

But, if the multiplication steps are fewer than 48, the result might be spread between

accumulators a and b. Doing an appropriate right shift of the multiplicand in r, and the

appropriate number of multiplication steps, it is possible to ensure that the result is either fully in

a or in b.

Example 2: 24-bit fractional number multiplication, result in a

Let‘s assume that multiplicand b is 12.5, given as 24-bit number with 4 integer and 20 fractional

digits, and b has to be multiplied by 1.5. The result shall have 24 significant bits, too.

To have the final result fully in a, it is best to shift r as far as possible to the left. Therefore, r is

shifted 46 bit to the left, r = ’h600000 000000. This left shift is easily done for constants.

The minimum number of multiplication steps is then given by the number of significant bits of b.

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-17

12.5*1.5 = b*2expB * r*2expR = b*2-20 * r*2-46; b=’hC80000; r=’h600000000000

Steps a b r

 ’h000000000000 ’h000000C80000 ’h600000000000

8  ’h000000000000 ’h00000000C800 ’h600000000000

16  ’h000000000000 ’h0000000000C8 ’h600000000000

19  ’h000000000000 ’h000000000019 ’h600000000000

20 +, ’h300000000000 ’h00000000000C ’h600000000000

21  ’h180000000000 ’h000000000006 ’h600000000000

22  ’h0C0000000000 ’h000000000003 ’h600000000000

23 +, ’h360000000000 ’h000000000001 ’h600000000000

24 +, ’h4B0000000000 ’h000000000000 ’h600000000000

After 24 multiplication steps the full 24-bit result stands in a, starting at the highest significant

bit. In many cases the result can be used in this form to do further mathematical processing, e.g.

as parameter r in a further multiplication.

In case the true decimal value has to be calculated from the result, this is done by following

formula:

product = a*2steps+expR+expB = a*224+(-20)+(-46) = a*2-42

’h4B0000000000*2-42 = ’h4B*2-2 = 75*2-2 = 18.75

 Steps = expRes – expB – expR
 Note: Steps >= Number of significant bits in B

 Steps = expRes – expB – expR – 48
 Note: Steps >= Number of significant bits in B

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

3.2.4 div

The instruction “div” is, like the multiplication, just a sinlge step of a complete division. The

necessary number of steps for a complete division depends on the accuracy of the result. The

dividend is in accumulator a, the divisor is in accumulator r. Every division step contains following

actions:

 leftshift b

 compare a and r. If a is bigger or equal to r then r is subtracted from a and One is added to b

 leftshift a

Start Conditions: 0 < a < 2*r, b = 0

Again, multiple division steps are implemented in the standard.h library to be easily used by

customers. A call of function e.g. div_24 out of this library will do a sequence of 24 division steps.

The result is found in b, the remainder in a.

With N division steps the result in b:= (a/r)+2^(N-1), a:= remainder*2^N.

Example 1: a = 2, r = 6, Integer division

Steps a = 2 b r = 6

 000000..000010 0..00000 0..0110 a < r, leftshift b, a

1 000000..000100 0..00000 0..0110 a < r, leftshift b, a

2 000000..001000 0..00000 0..0110 leftshift b, a >= r: a-=r, b+=1,

leftshift a

3 000000..000100 0..00001 0..0110 a < r, leftshift b, a

4 000000..001000 0..00010 0..0110 leftshift b, a >= r: a-=r, b+=1,
leftshift a

5 000000..000100 0..00101 0..0110

The following two, more complex examples show a nice advantage of division over multiplication:

The resolution in bit is directly given by the number of multiplication steps. With this knowledge,

assembly programs can be written very effectively. It is easy to use only the number of division

steps that is necessary.

Example 2: A = 8.75, R = 7.1875, Fractional number division, A & R with 4 fractional digits each.

8.75/7.1875 = a*2expA / r*2expR = a*2-4 / r*2-4

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-19

Steps a = 140 b r = 115

 1000 1100 0000 0000 0111 0011 leftshift b, a >= r: a-=r, b+=1,

leftshift a

1 0011 0010 0000 0001 0111 0011 a < r, leftshift b, a

2 0110 0100 0000 0010 0111 0011 a < r, leftshift b, a

3 1100 1000 0000 0100 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

4 1010 1010 0000 1001 0111 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

5 0110 1110 0001 0011 0111 0011 a < r, leftshift b, a

6 1101 1100 0010 0110 0111 0011 leftshift b, a >= r: a-=r, b+=1,

leftshift a

7 1101 0010 0100 1101 0111 0011 leftshift b, a >= r: a-=r, b+=1,

leftshift a

8 1011 1110 1001 1011 0111 0011

Example 3: A = 20, R = 1.2, Fractional number division, R < A.

A and R are left shifted to display the fractional digits of R. Further, R has to be leftshifted till it is

bigger than A/2.

20/1.2 = a*2expA /r*2expR = a*2-4 /r *2-8

Steps a = 320 b r = 307

 0001 0100 0000 0000 0000 0000 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

1 0000 0001 1010 0000 0000 0001 0001 0011 0011 a < r, leftshift b, a

2 0000 0011 0100 0000 0000 0010 0001 0011 0011 a < r, leftshift b, a

3 0000 0110 1000 0000 0000 0100 0001 0011 0011 a < r, leftshift b, a

4 0000 1101 0000 0000 0000 1000 0001 0011 0011 a < r, leftshift b, a

5 0001 1010 0000 0000 0001 0000 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,

leftshift a

6 0000 1101 1010 0000 0010 0001 0001 0011 0011 a < r, leftshift b, a

7 0001 1011 0100 0000 0100 0010 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

3-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

8 0001 0000 0010 0000 1000 0101 0001 0011 0011 a < r, leftshift b, a

9 0010 0000 0100 0001 0000 1010 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

10 0001 1010 0010 0010 0001 0101 0001 0011 0011 leftshift b, a >= r: a-=r, b+=1,
leftshift a

11 0000 1101 1110 0100 0010 1011 0001 0011 0011 a < r, leftshift b, a

12 0001 1011 1100 1000 0101 0110 0001 0011 0011

Steps = 1 + expA – expB – expRes

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-1

4 Assembly Programs

The PCapØ2 assembler is a multi-pass assembler that translates assembly language files into HEX

files as they will be downloaded into the device. For convenience, the assembler can include

header files. The user can write his own header files but also integrate the library files as they are

provided by acam. The assembly program is made of many statements which contain instructions

and directives. The instructions have been explained in the former section 3 of this datasheet. In

the following sections we describe the directives and some sample code.

Each line of the assembly program can contain only one directive or instruction statement.

Statements must be contained in exactly one line.

Symbols

A symbol is a name that represents a value. Symbols are composed of up to 31 characters from

the following list:

A - Z, a - z, 0 - 9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to

be taken for this.

Numbers

Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier.

Hexadecimals are specified by leading “0x”.

Expressions and Operators

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at

assembly time and can be used to calculate values that otherwise would be difficult to be

determined.

The following operators are available with the given precedence:

Level Operator Description

1 () Brackets, specify order of execution

2 * / Multiplication, Division

3 + — Addition, Subtraction

Example:

CONST value 1

equal ((value + 3)/2)

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

4-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4.1 Directives

The assembler directives define the way the assembly language instructions are processed. They

also provide the possibility to define constants, to reserve memory space and to control the

placement of the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

CONST Constant definition, CONST [name] [value]
value might be a number, a constant, a sum
of both

CONST Slope 42
CONST Slope constant + 1

LABEL: Label for target address of jump instructions.
Labels end with a colon. All rules that apply to

symbol names also apply to labels.

jsb LABEL1
LABEL1:
...

; Comment, lines of text that might be

implemented to explain the code. It begins
with a semicolon character. The semicolon

and all subsequent characters in this line will
be ignored by the assembler. A comment can

appear on a line itself or follow an instruction.

; this is a comment

org Sets a new origin in program memory for

subsequent statements.

org 0x23
equal 0x332211
; write 0x11 to address
0x23,
; 0x22 to address 0x24 ...

equal Insert three bytes of user defined data in

program memory, starting at the address as
defined by org.

#include Include the header or library file named in the
quotation marks "" or brackets < >. The code

will be added at the line of the include
command.

In quotation marks there might be just the file
name in case the file is in the same folder as

the program, but also the complete path.
Names in brackets refer to the acam library

with the fixed path \Programs\acam
PCapØ2\lib.

#include <rdc.h>
#include "rdc.h"

#ifdef
#elseif
#endif

Directive to implement code or not, dependig
on the value of the symbol following the #ifdef

directive. Use e.g. to include header files only
once into a program.

#ifdef __standard_h__
#else
#define __standard_h__
...
#endif

#define Defines a symbol that will be interpreted as true

when being analysed by the #ifdef directive

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-3

4.2 Sample Code

In the following we show some sample code for programming loops in the various kinds, for the

use of the load instruction and the rotate instruction.

4.2.1 “for” Loop

load a, max
not a
inc a
rad index
move r, a
do:
;{..}
rad index
inc r
jCarC do

for(index=-max; index <
0; index++)

max := number of repetitions
2
nd
 complement for max (~max+1)

store (-max) to index

loop body

loop increment
repeat while index < 0

4.2.2 “while” Loop

do:
rad expression
move a, r
jEQ done
;{..}
clear a
jEQ do
done;

while (expression)
{..}

activate Status Flags for
„expression“. Jump if expression ==
0
loop body
unconditional jump without writing
to program counter stack

4.2.3 “do - while” Loop

do:
;{..}
rad expression
move a, r
jNE do

do
{..}
while (expression)

loop body

activate Status Flags
jump if expression != 0

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

4-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4.2.4 “do - while” with 2 pointers

load a, MW7
rad loopLimit
move r, a
load a, MW0
rad DPTR0
move r, a
load a, RES0
rad DPTR1
move r, a
do:
 rad _at_DPTR0
 move a, r
 rad _at_DPTR1
 move r, a
 rad loopLimit
 move a, r
 rad DPTR1
 inc r
 rad DPTR0
 inc r sub a, r
jCarS do

loopLimit = *MW7

ptrSource = *MW0;

ptrSink = *Res0;

do { *ptrSink++ =
*ptrSource++ }

while (ptrSource <= MW7)

load max-address for ptrSource

load ptrSource with source
address

load ptrSink with sink address

loop body
 load value from source

 write value to sink

 write max-address to a

 increment sink address

 increment source
 address
 limitLoop – ptrSource
repeat loop if ptrSource <= max-
address

4.2.5 Load Negative Values

How to load a negative 24 bit value from the program memory

load a, 5
not a
inc a

a = -5

a = 'h000000_000005
a = 'hffffff_fffffa (:=-6)
a = 'hffffff_fffffb (:=-5)

4.2.6 Load Signed Values

How to load a signed 24 bit value from the program memory

load2exp a, 23
load b, <S24bC>
rad 0
move r, b
sub b, a
jCarC positive
 sub b, a
 move r, b
positive:
 move b, r

b = <S24bC>

a=2^23
reg0 = <S24bC>

if(<S24bC> >= 2^23)
 reg0 = <S24bC> - 2^24

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-5

4.2.7 Rotate Right A to B

To rotate a value right from Akku A to Akku B, Akku B and R must be set to zero. Afterwards with

each command a single „rotate right from A to B“ is done. This function could be used e.g.

to shift a 8-bit value to the highest byte in the register.

load a, 0xa3
clear b
move r, b
mult ; (8x)
mult
..
mult

A = <U8bC>
b = a << 40

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

4-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-1

5 Libraries

The  assembler comes with a set of ready-to-use library functions. With these libraries

the firmware can be written in a modular manner. The standard firmware 03.01.xx is a good

example for this modular programming.

When the DSP has to be programmed by the user for a specific application or when the firmware

ought to be modified, these library functions can be simply integrated into the application program

without any major tailoring. They save programming effort for known, repeatedly used, important

functions. Some library files are interdependent on other file(s) from the library.

The library functions are called header files (they have *.h extension) in the assembler software

and have to be included in the main *.asm program.

The following are the header files that are supplied with the  assembler as part of the

standard firmware.

 standard.h

 PCapØ2a.h

 cdc.h

 rdc.h

 signed24_to_signed48.h

 dma.h

 pulse.h

 sync.h

 median.h

The input parameters, output parameters, effect on RAM contents etc. for each of these library

functions is explained in the tables below.

NOTE:

In the standard firmware and in all the library files, the notation “ufdN” is used as a comment. This

shows if the parameter is signed or unsigned and the number of fractional digits in the number,

N. For e.g. ufd21 indicates that the parameter is an unsigned number with 21 digits after the

decimal point, 21 fractional digits. If the u at the beginning is missing, it is a signed number.

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

5-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

5.1 standard.h

Function: Standard math library for implementing multiplication, division and

shift operations.

Input parameters:

For shift right (1-48): parameter in accumulator B

For shift left (1-48) : parameter in accumulator A
Multiplication (1-48 steps) : parameter in Accumulators B and R
Division (1-48 steps) : Dividend in Accumulator A, Divisor in R

Output/Return value:

For shift right (1-48) : Output in B
For shift left (1-48) : Output in A

Multiplication (1-48 steps) : Output in AB
Division (1-48 steps): Quotient in B, Remainder can be calculated

from R

Prerequisites -

Dependency on other
header files

-

Function call shiftR_B_48, ..., shiftR_B_01
shiftL_A_48, ..., shiftL_A_01

mult_48, ..., mult_01
div_49, ..., div_01

__div_variable__
__mult_variable__

Temporary memory
usage

4 locations – all declared and used in the “__temporary_variables__”
address range given as input parameter by the user.

Changes any RAM
content

permanently?

No

Function __div_variable__

variable number of division steps

parameter Akku A: dividend

Akku B: no of division steps

(rad) __sub_standard_divisor__ := divisor

return Value Akku B := (dividend/divisor)

call jsb __div_variable__

local / temporary ram 4x:

__sub_standard_divisor__

__var_index0__

__var_index1__

__sub_standard_AkkuC__

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-3

Function __mult_variable__

variable number of multiplication steps

parameter Akku A: no of multiplication steps

Akku B: multiplier 1

(rad) __sub_standard_multiplier__ := multiplier 2

return Value Akku AB := (multiplier 1 *multiplier 2)

call jsb __mult_variable__

local / temporary ram 4x:

__sub_standard_multiplier__

__var_index0__

__var_index1__

__sub_standard_AkkuC__

5.2 PCapØ2a.h

Function: This is a standard library for PCapØ2A firmware projects. This
library contains the major address-mappings and constant names for

the PCapØ2A.
This file should be always included. It contains no commands, so no

pro- gram space is wasted

Input parameters: -

Output/Return value: The constants in the file are declared, these can be used further in
the program.

Prerequisites -

Dependency on other

header files

-

Function call -

Temporary memory
usage

-

Changes any RAM
content

permanently?

-

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

5-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

5.3 cdc.h

Function: Function for Capacitance-to-D igital Conversion. This module contains

the subroutine to determine the capacitor ratios, dependent on

measurement scheme and the compensation mode

Input parameters:

__sub_cdc_differential__ :

__sub_cdc_gain_corr__ :
__persistent_cdc_first__ :

 __temporary_variables__ :

0 = single sensor

1 = differential sensor
Factor for TCsg ufd21
Address where CDC results are to be

stored
Define address space for temporary

variables,
address < 39!

 tbd result as (C1-
C0)/(C1+C0)

Switches #define __CDC_INVERSE__ Results in C1_ratio to C7_ratio are the
reversal values (C0/C1 etc.)

 #define __SUB_CDC_FPP_x__ x maybe a value between 19..25 select
the fraction point position of the

results.
Default = 21

 #define
__CDC_VARIABLE_AVERAGE__

Activate variable averaging by DSP. If
enabled, A Value != 0 must be written

to __sub_cdc_dsp_avr__
else declare

CONST __sub_cdc_dsp_avr__ x
where x is the number for DSP

averaging

Output/Return value: Capacitance ratios C0_ratio, ..., C7_ratio

CDC_BUSY signals if DSP-Averaging is complete (0:=false; 1:=true)

Prerequisites Declare a constant ONE = 1

Dependency on other
header files

#include <standard.h>

Function call jsb __sub_cdc__

Temporary memory
usage

5 locations – all declared and used in the “__temporary_variables__”
address range given as input parameter by the user.

Changes any RAM
content

permanently?

Yes – 10 locations updated with capacitance ratio results in the
address range specified by the user in __persistent_cdc_first__

C0_ratio
C1_ratio

C2_ratio
C3_ratio

C4_ratio
C5_ratio

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-5

C6_ratio

C7_ratio
DSP_C_AVR_CNT

CDC_BUSY

5.4 rdc.h

Function: Function for Resistance-to-D igital Conversion. This module contains

the subroutine to determine the resistor ratios.

Input parameters:

__persistent_rdc_first__ : address where RDC results are to be

stored
__temporary_variables__ : define address space for temporary
variables

Output/Return value: Resistance ratios R0_ratio, R1_ratio, R2_ratio

Prerequisites none

Dependency on other
header files

#include <standard.h>

Function call jsb __sub_rdc__

Switches #define __SUB_RDC_FPP_x__
where x is the number of fraction (fix point position??) point position

for results R0_ratio to R2_ratio. Default: 21

Temporary memory

usage

1 location - declared and used in the “__temporary_variables__”

address range given as input parameter by the user.

Changes any RAM

content
permanently?

Yes – 3 locations updated with resistance ratio results in the

address range specified by the user in __persistent_rdc_first__
R0_ratio
R1_ratio

R2_ratio

5.5 signed24_to_signed48.h

Function: This function is used to type-cast a 24-bit signed number to 48-bit
signed

value. For use e.g. with values transferred by PARA-Registers to a
full 48-bit signed value.

Input parameters:

Accumulator B = signed 24bit value
__temporary_variables__ : define address space for temporary
variables

Output/Return value: Accumulator B = signed 48bit Value

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

5-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Prerequisites -

Dependency on other
header files

-

Function call jsb __sub_signed24_to_signed48__

Temporary memory
usage

1 location - declared and used in the “__temporary_variables__”
address range given as input parameter by the user.

Changes any RAM

content
permanently?

Accumulator A is used in this subroutine, it will be overwritten.

5.6 dma.h

Function: „Direct Memory Access“ – This library file contains a subroutine to
copy sequential RAM-content from one address-space to another.

The number of RAM values to be copied can be specified.

Input parameters:

Accumulator B : number of values to be copied

DPTR1 : source RAM block address
DPTR0 : destination RAM block address

Output/Return value:

The contents, i.e. the specified number of values are copied from
the source RAM block to the destination RAM block.

Prerequisites none

Dependency on other

header files

-

Function call jsb __sub_dma__

Temporary memory
usage

-

Changes any RAM
content

permanently?

Yes, the destination RAM block

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-7

5.7 pulse.h

Function: Linearization function specifically to determine the pulse-output

value:
Accumulator B = __sub_pulse_slope__ * Accu. B +

__sub_pulse_offset__ Return Value is limited by 0 <= Akku B < 1024

Input parameters:

Accumulator B :
__sub_pulse_slope__ :

__sub_pulse_offset__ :
__temporary_variables

__ :

input value, unsigned, 21 fractional digits
constant factor, signed, 4 fractional digits

constant summand, signed, 1 fractional digit
define address space for temporary variables

Output/Return value:

The pulse output signals are generated

Prerequisites Declare a constant ONE = 1

Dependency on other
header files

-

Function call jsb __sub_pulse__

Temporary memory
usage

1 location - declared and used in the “__temporary_variables__”
address range given as input parameter by the user.

Changes any RAM
content

permanently?

No

5.8 sync.h

Function: The sync-filter (aka sin(x)/x) or rolling average filter is a filter function

that determines the average for the last N values specified by the user
in “__sub_sync_FilterOrder__ “.

Input parameters:

Accumulator B :
__sub_sync_FilterOrder__

:
__persistent_sync_first__

:
__temporary_variables__

:

input to be filtered
filter order, depth of filtering

address where the filtered results are
stored

define address space for temporary
variables

Output/Return value:

The averaged value is passed back in Accumulator B. Additionally the

filtered results are updated in the RAM.

Prerequisites Declare a constant ONE = 1

Filter must be initialized by -> jsub __sub_sync_initial__

Dependency on other -

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

5-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

header files

Function call jsb __sub_sync__

Temporary memory

usag

1 location - declared and used in the “__temporary_variables__”

address range given as input parameter by the user.

Changes any RAM
content

permanently?

Yes –RAM locations updated with filtered results in the address range
specified by the user in __persistent_sync_first__. Number of RAM

locations depends on the filter order.

ringMemFirst :

ringMemLast :
FilterAkku :

currentRingPos :

AkkuDivider :

start of filter-memory

last field of the filter memory
sum of all memory-fields

index Pointer; points to the current
memory field

2^42 * FilterOrder

5.9 median.h

Function: This is a quasi-median-filter. With __sub_median_FilterOrder__ the
depth of the memory is defined. Each new Value (X) will be

compared with the current median value,
Is the new value smaller or equal to the median value, the last

value in the list will be replaced by X. Otherwise the first value in
the list will be replaced by X.

Afterwards the complete list is sorted. The value at the very
middle of the list is returnd as a new median.

Input parameters:

Accumulator B :

__sub_ median _FilterOrder__ :
__persistent_median_first__ :

__temporary_variables__ :

__sub_median1_FilterOrder__:

__persistent_median1_first__:

Input to be filtered.

Filter order, depth of filtering
Address where the filtered

values are to be stored
Address space for temporary

variables
Filter order for a second

median Filter address where
the second median filter values

are to be stored

Output/Return value: The new median is returned in Accumulator B.

Prerequisites Declare a constant ONE = 1

Dependency on other
header files

-

Switches #define __sub_median_filter1_enable__
if a second median filter will be used this is the switch to activate

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-9

Function call jsb __sub_median__

jsb __sub_median1__

Temporary memory

usage

2 locations - declared and used in the “__temporary_variables__”

address range given as input parameter by the user.

Changes any RAM

content
permanently?

Yes – RAM locations updated with filtered results in the address

range specified by the user in __persistent_median_first__.
Number of RAM locations depends on the filter order.

__sub_median_list_first__ :

__sub_median_list_middle__ :
__sub_median_list_last__ :

Start of filter memory

middle field of the filter memory
last field of the filter memory

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

5-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 6-1

6 Examples

6.1 Standard Firmware, Version 03.01.02

Figure 6-1: Main Loop Flowchart

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

6-2 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Code snippets:

a) Identification of firmware

The following code writes the version of the firmware into a specific address of the program code:

org FW_VERSION

 equal FWG_Capacitance + FWT_Standard + 02

b) Check measurement status

These lines check whether measurement data are available or not. If they are, the program jumps

into the sub routines given by the libraries. The CDC writes data alternately into two banks.

Therefore, both banks have to be checked for valid data.

jcd BANK0VALIDN, MK_QUERY_FL1 ;Jump if a CDC result is not yet available in Bank0

 jsb __sub_cdc__ ;If result available - call subroutine for Capacitor

 ;to Digital conversion

 jsb MK_main

MK_QUERY_FL1: ;Checking if CDC result is available in Bank1

jcd BANK1VALIDN, MK_QUERY_FL2 ;Jump if a CDC result is not yet available in Bank1

 jsb __sub_cdc__ ;If result available - call subroutine for Capacitor

 ;to Digital conversion

 jsb MK_main

MK_QUERY_FL2: ;Checking if temperaure measurement (RDC) is running

jcd TENDFLAGN, MK_RO_STOP ;Jump if a meas. is still running & RDC result is

 ;not yet available

 jsb __sub_rdc__ ;If result available - call subroutine Resistor to

 ;Digital conversion

c) Provide data to read-registers

After the subroutines __sub_cdc__ and __sub_cdc__ have been called, the results in form of

Cs/Cref and Rs/Rref ratios are found in dedicated RAM space. With the following code the

results are copied to the read registers. It is very simple thanks to subroutine __sub_dma__ from

the acam library.

MK_main: ; Copying the CDC result to read-registers

load a, C0_ratio ; Loads the accumulator with first result

rad DPTR1 ; Source address pointer

move r, a

load a, RES0 ; First result

rad DPTR0 ; Destination address pointer

move r, a

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 6-3

load b, 8 ; 8 - No. of locations to be copied

jsb __sub_dma__ ; This copies 8 address contents from the source

 ;location to the destination location

rad R0_ratio ; Copy the RDC results to the result registers

move a, r ; Copying only 2 results

rad RES10

move r, a

rad R2_ratio

move a, r

rad RES11

move r, a

d) Set the pulse interface

The offset and slope of the pulse outputs is typically defined in the parameter registers of

PCapØ2.

CONST pulse_select PARA2 ; bits<7..4> - pulse1_select

 ; bits<3..0> - pulse0_select, add this bits to address C0_ratio

CONST pulse_slope0 PARA3 ; signed 19 integer + fd4

CONST pulse_offset0 PARA4 ; signed 22 integer + fd1

CONST pulse_slope1 PARA5 ; signed 19 integer + fd4

CONST pulse_offset1 PARA6 ; signed 22 integer + f1

The following is the calculation of linear function with the given slope and offset and thus scaling

the pulse output to the necessary range.

; ---------- Pulse 0 -----------------------------

rad pulse_slope0

move b, r

jsb __sub_signed24_to_signed48__

rad Slope

move r, b ; Slope m

rad pulse_offset0

move b, r

jsb __sub_signed24_to_signed48__

rad Offset

move r, b ; Offset b

rad _at_DPTR0 ; Getting the result x to be linearized

Member of the ams Group

http://www.acam.de/

® PCapØ2A DSP

6-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

move b, r

clear a

rad Slope

jsb mult_24 ; Calculating m*x, result present in lower 24 bits of a and

 ; upper 24 bits of b

rad Offset ; Taking only result in ‘a’ as final result

add a, r ; Calculating m*x + B

shiftR a ; To account for only 1 digit after the decimal point

finally

rad AkkuC

move r, a

jPos MK_Pulse0_GE_Zero ; Scaling to minimum 0 : if(a < 0) a = 0

rad AkkuC

sub r, a

move a, r

After the result has been corrected by linearization it has to be clipped to the 0 to 1023 output

range of the PCapØ2 pulse interface:

MK_Pulse0_GE_Zero:

load2exp b, 10 ; Scaling to maximum 1023 : if(a >= 1024) a = 1023

sub a, b

jNeg MK_Pulse0_s_1024

rad ONE

sub b, r ; b = 1023

rad AkkuC

move r, b

MK_Pulse0_s_1024:

rad AkkuC

move b, r

rad PULSE0

move r, b ; PCapØ2 can output the value at PULSE0 output

Member of the ams Group

http://www.acam.de/

PCapØ2A DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 7-1

7 Miscellaneous

7.1 Bug Report

7.2 Document History

17.01.2013 First release

16.07.2013 Version 0.1 released, section 2.5 GPIO table expanded

16.08.2013 Version 0.2 released, section 3 expanded with new opcodes

 - Bitwise operation: not, and, or, xor

 - Simple arithmetic: inc

Member of the ams Group

http://www.acam.de/

acam-messelectronic gmbh

Friedrich-List-Straße 4

76297 Stutensee-Blankenloch

Germany

Phone +49 7244 7419 – 0

Fax +49 7244 7419 – 29

E-Mail support@acam.de

www.acam.de

Member of the ams Group

http://www.acam.de/

	ScioSense_Cover_page
	PCAP02 Datasheet - Digital Signal Processor

