

## FlexiForce<sup>™</sup>Standard Model A201



The FlexiForce A201 is a piezoresistive force sensor engineered for measuring forces between two mating surfaces with ease. Its ultra-thin, flexible design and multiple length options make it an ideal choice for applications requiring non-intrusive, reliable force measurement. Whether you're testing, prototyping, conducting research, or exploring proof-of-concept designs, the A201 delivers consistent results in tight spaces. Compatible with Tekscan electronics- including the FlexiForce Sensor Characterization Kit and the ELF System\*- or your own setups, including multimeters, this sensor adapts to your needs with ease.

#### **Benefits**

- Thin and Flexible
   Easily integrates into tight spaces
   for non-intrusive force measurement
   between mating surfaces.
- Easy to Use
   Compatible with a variety of electronics and ready-to-use for testing, prototyping, or embedding.
- Convenient and Cost-Effective
   Off-the-shelf availability, customizable
   options, and consistent performance
   reduce development time and costs.

### **Physical Properties**

**Thickness** 0.203 mm (0.008 in.) **Sensing Area** 9.53 mm (0.375 in.) diameter

**Length** 191 mm (7.5 in.)\*\* **Connector** 3-pin Male Square Pin (center pin is inactive)

Optional trimmed lengths: 152 mm (6 in.), 102 mm (4 in.), 51 mm (2 in.)

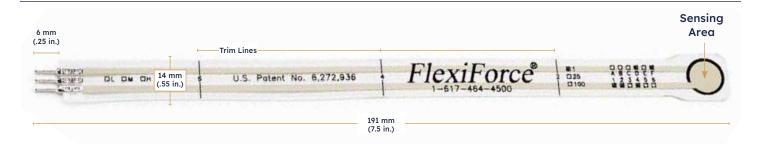
Substrate

Polyester

**Width** 14 mm (0.55 in.) **Pin Spacing** 2.54 mm (0.1 in.)

\* Sensor will require an adapter/extender to connect to the ELF System. Contact your Tekscan representative for assistance.

\*\* Length does not include pins. Please add approximately 6 mm (0.25 in.) for pin length for a total length of approximately 197 mm (7.75 in).


|                         | Typical Performance             | Evaluation Conditions                             |
|-------------------------|---------------------------------|---------------------------------------------------|
| Linearity (Error)       | < ±3% of full scale             | Line drawn from 0 to 50% load                     |
| Repeatability           | < ±2.5%                         | Conditioned sensor, 80% of full force applied     |
| Hysteresis              | < 4.5% of full scale            | Conditioned sensor, 80% of full force applied     |
| Drift                   | < 5% per logarithmic time scale | Constant load of 111 N (25 lb)                    |
| Response Time           | < 5µsec                         | Impact load, output recorded on oscilloscope      |
| Operating Temperature   | -40°C - 60°C (-40°F - 140°F)    | Convection and conduction heat sources            |
| Durability              | ≥ 3 million actuations          | Perpendicular load, room temperature, 22 N (5 lb) |
| Temperature Sensitivity | 0.36%/°C (± 0.2%/°F)            | Conductive heating                                |

All data above was collected utilizing an Op Amp Circuit (shown on the next page).

If your application cannot allow an Op Amp Circuit, visit <a href="www.tekscan.com/flexiforce-integration-guides">www.tekscan.com/flexiforce-integration-guides</a>, or contact a FlexiForce Applications Engineer.

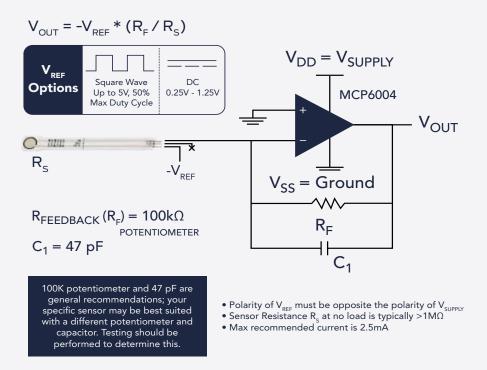


#### **Sensor Measurements**



# Standard Force Ranges as Tested with Inverting Op-Amp Circuit

4.4 N (0 - 1 lb)


111 N (0 - 25 lb)

445 N (0 - 100 lb) <sup>†</sup>

'This sensor can measure up to 4,448 N (1,000 lb). To measure higher forces, apply a lower drive voltage (-0.5 V, -0.25 V, etc.) and reduce the resistance of the feedback resistor (1k $\Omega$  min.). To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

Sensor output is a function of many variables, including interface materials. Calibration is recommended. See <u>FlexiForce Best Practices</u> for details.

#### **Recommended Circuit**



617.464.4500

1.800.248.3669

info@tekscan.com

tekscan.com

Contact us for more information.