

AD202KYATI

## **SELECTION GUIDE**

| Part #                  | Description                                                                                    | Package | Serial # | Status             | Output Voltage<br>vs. Power<br>Supply | Bandwidth | Linearity | Max<br>Common-<br>Mode<br>Voltage | Power<br>Supply<br>Current | Rise<br>Time<br>t <sub>r</sub> | Pinout   | Mechanical<br>Outline | Datasheet | Buy Now      |   |
|-------------------------|------------------------------------------------------------------------------------------------|---------|----------|--------------------|---------------------------------------|-----------|-----------|-----------------------------------|----------------------------|--------------------------------|----------|-----------------------|-----------|--------------|---|
| AD202KNATI<br>2000V DIP | Pin out compatible with<br>AD202KN, but output<br>voltage is not isolated<br>with power supply | DIP     | ≤25156   | Stop<br>production | Non-Isolated                          | 20kHz     | ±0.02%    | 2000V                             | 20mA                       | 18μs                           | Fig. 1.1 | Fig. 10.1             | POF       | -            |   |
|                         | Upgraded replacement for AD202KN                                                               | DIP     | >25156   | In production      | Isolated                              | 800kHz    | ±0.02%    | 2000V                             | 12mA                       | 0.5µs                          |          |                       | POF       | <b>*</b> *** |   |
| AD202JNATI<br>1000V DIP | Upgraded replacement<br>for AD202JN                                                            | DIP     | -        | In production      | Isolated                              | 800kHz    | ±0.02%    | 1000V                             | 12mA                       | 0.5μs                          | Fig. 1.2 | Fig. 10.1             | PDF       | <b>*</b> **  |   |
| AD202KYATI              | Pin out compatible with<br>AD202KY, but output<br>voltage is not isolated<br>with power supply | SIP     | ≤25290   | Stop<br>production | Non-Isolated                          | 20kHz     | ±0.02%    | 2000V                             | 20mA                       | 18μs                           | Fig. 1.3 | Fig. 1.3              | Fig. 10.2 | POF          | - |
| 2000V SIP               | Upgraded replacement for AD202KY                                                               | SIP     | >25290   | In production      | Isolated                              | 800kHz    | ±0.02%    | 2000V                             | 12mA                       | 0.5µs                          |          |                       | PDF       | <b>*</b> *** |   |
| AD202JYATI<br>1000V SIP | Upgraded replacement for AD202JY                                                               | SIP     | -        | In production      | Isolated                              | 800kHz    | ±0.02%    | 1000V                             | 12mA                       | 0.5μs                          | Fig. 1.4 | Fig. 10.2             | PDF       | <b>*</b> *** |   |
| AD202KN                 | Made by Analog<br>Device                                                                       | DIP     | -        | Stop<br>production | Isolated                              | 2kHz      | ±0.025%   | 2000V                             | 5mA                        | 180µs                          | -        | -                     | -         | -            |   |
| AD202JN                 | Made by Analog<br>Device                                                                       | DIP     | -        | Stop<br>production | Isolated                              | 2kHz      | ±0.05%    | 1000V                             | 5mA                        | 180µs                          | 1        | -                     | -         | -            |   |
| AD202KY                 | Made by Analog<br>Device                                                                       | SIP     | -        | Stop<br>production | Isolated                              | 2kHz      | ±0.025%   | 2000V                             | 5mA                        | 180µs                          | 1        | -                     | -         | -            |   |
| AD202JY                 | Made by Analog<br>Device                                                                       | SIP     | -        | Stop<br>production | Isolated                              | 2kHz      | ±0.05%    | 1000V                             | 5mA                        | 180µs                          | -        | -                     | -         | -            |   |
| ATIA202KN               | Obsolete, identically replaced by AD202KNATI                                                   | DIP     | -        | Stop<br>production | Isolated                              | 20kHz     | ±0.01%    | 2000V                             | 12mA                       | 18μs                           | -        | -                     | PDF       | -            |   |
| ATIA202KY               | Obsolete, identically replaced by AD202KYATI                                                   | SIP     | -        | Stop<br>production | Isolated                              | 20kHz     | ±0.01%    | 2000V                             | 12mA                       | 18μs                           | -        | -                     | POF       | -            |   |

www.analogtechnologies.com Sales: sales@analogti.com Help Improve Datasheet: datasheet@analogti.com Tel.: (408) 748-9100



Figure 1.1. Photo of AD202KNATI



Figure 1.2. Photo of AD202JNATI

### **FEATURES**

Isolated Power Outputs

**○** Small Size: 4 Channels/Inch Low

Uncommitted Input Amplifier

 $\Rightarrow$  High CMR: 130dB (Gain = 100V/V)

⇒ High Accuracy: ±0.2% Max Nonlinearity

 $\Rightarrow$  High CMV Isolation:  $\pm 2000$ V Continuous

### **APPLICATIONS**

It can be applied for multichannel data acquisition, current shunt measurements motor controls, process signal isolation, high voltage instrumentation amplifier, etc.

### **DESCRIPTION**

## Upgraded Drop-in Replacement for AD202KY

# We guarantee production for $\geq 10$ years.

The AD202KYATI is a high voltage isolation amplifier designed for multiple applications where input signals are measured, processed, or transmitted without a galvanic



Figure 1.3 Photo of AD202KYATI



Figure 1.4 Photo of AD202JYATI

connection. These isolation amplifiers in SIP package offer a signal and power isolation function.

With internal transformer-coupling, the AD202KYATI provides total galvanic isolation between the input and output stages of the isolation amplifier. These amplifiers eliminate the need for an external DC-DC converter, which allows the designer to minimize the necessary circuit overhead, thus reducing the overall design and component costs.

The AD202KYATI is powered directly from a 15V DC power supply, featuring small size, high accuracy, low power, wide bandwidth, excellent performance, flexible input, isolated power, etc.

### **INSIDE THE AD202KYATI**

The AD202KYATI uses an amplitude modulation technique to permit transformer coupling of signals down to dc (Figure 2). It also contains an uncommitted input op amp and a power transformer that provides isolated power to the op amp, the modulator, and any external load. The power transformer primary is driven by a 20kHz, 15V<sub>P-P</sub> square wave generated internally.

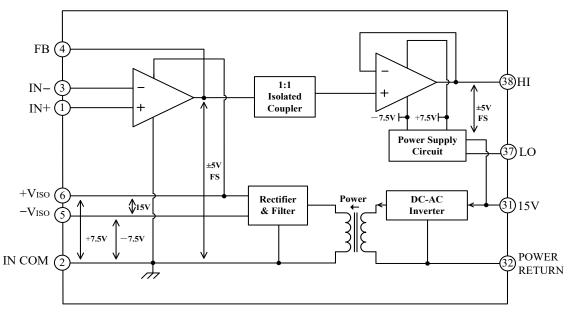



Figure 2. AD202KYATI Functional Block Diagram

# **SPECIFICATIONS**

Table 1. Electrical characteristics. (Typical @  $25^{\circ}$ C and  $V_S = 15V$  unless otherwise noted.)

| Model                                                                | AT202KY                                                    |  |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| GAIN                                                                 |                                                            |  |  |  |
| Range                                                                | 1V/V-100 V/V                                               |  |  |  |
| Error                                                                | $\pm 0.5\%$ typ ( $\pm 4\%$ max)                           |  |  |  |
| vs. Temperature                                                      | ±20ppm/°C typ (±45ppm/°C max)                              |  |  |  |
| vs. Time                                                             | ±50 ppm/1000 Hours                                         |  |  |  |
| vs. Supply Voltage                                                   | ±0.01%/V                                                   |  |  |  |
| Nonlinearity ( $G = 1V/V$ )                                          | ±0.01 max                                                  |  |  |  |
| Nonlinearity vs. Isolated Supply Load                                | ±0.0015%/mA                                                |  |  |  |
| INPUT VOLTAGE RATINGS                                                |                                                            |  |  |  |
| Input Voltage Range                                                  | ±5V                                                        |  |  |  |
| Max Isolation Voltage (Input to Output)                              |                                                            |  |  |  |
| AC, 60Hz, Continuous                                                 | 1500Vms                                                    |  |  |  |
| Continuous (AC and DC)                                               | ±2000V Peak                                                |  |  |  |
| CMRR (Common-Mode Rejection Ratio)*                                  | -74dB                                                      |  |  |  |
| CMTC(Common-Mode Transfer Coefficient)*                              | $-0.2 \times 10^3$                                         |  |  |  |
| $RS \le 100\Omega$ (HI and LO Inputs) $G = 1V/V$                     | 105dB                                                      |  |  |  |
| G = 100V/V                                                           | 130dB                                                      |  |  |  |
| $RS \le 1 \text{ k}\Omega$ (Input HI, LO, or Both) $G = 1\text{V/V}$ | 100dB min                                                  |  |  |  |
| G = 100V/V                                                           | 110dB min                                                  |  |  |  |
| Leakage Current Input to Output                                      | 2μA rms max                                                |  |  |  |
| @ 240Vrms, 60 Hz                                                     | 261111101111111                                            |  |  |  |
| INPUT IMPEDANCE                                                      |                                                            |  |  |  |
| Differential ( $G = 1V/V$ )                                          | $10^{12}\Omega$                                            |  |  |  |
| Common-Mode                                                          | 2GΩl4.5pF                                                  |  |  |  |
| INPUT BIAS CURRENT                                                   |                                                            |  |  |  |
| Initial, @ 25°C                                                      | ±30pA                                                      |  |  |  |
| vs. Temperature (0°C to 70°C)                                        | ±10nA                                                      |  |  |  |
| INPUT DIFFERENCE CURRENT                                             |                                                            |  |  |  |
| Initial, @ 25°C                                                      | ±5pA                                                       |  |  |  |
| vs. Temperature (0°C to 70°C)                                        | ±2nA                                                       |  |  |  |
| INPUT NOISE                                                          | -2 1                                                       |  |  |  |
| Voltage, 0.1Hz to 10Hz                                               | 1.8μV <sub>P-P</sub>                                       |  |  |  |
| f > 100Hz                                                            | $1.8\mu \text{ V P-P}$<br>$10.8\text{nV}/\sqrt{\text{Hz}}$ |  |  |  |
|                                                                      | 10.0Π γ/ γΠΖ                                               |  |  |  |
| FREQUENCY RESPONSE                                                   |                                                            |  |  |  |
| Bandwidth ( $V_O \le 10V_{P-P}$ , $G = 1V-50V/V$ )                   | 800kHz                                                     |  |  |  |
| Settling Time, to $\pm 10 \text{mV} (10 \text{V Step})$              | 1ms                                                        |  |  |  |

| Model                              | AT202KY                                     |  |  |  |  |
|------------------------------------|---------------------------------------------|--|--|--|--|
| OFFSET VOLTAGE (RTI)               |                                             |  |  |  |  |
| Initial, @ 25°C Adjustable to Zero | $(\pm 5 \pm 5/G)$ mV max                    |  |  |  |  |
| vs. Temperature (0°C to 70°C)      | $[\pm 10 \pm \frac{10}{G}] \mu V/^{\circ}C$ |  |  |  |  |
| RATED OUTPUT                       |                                             |  |  |  |  |
| Voltage (Out HI to Out LO)         | ±5V                                         |  |  |  |  |
| Output Resistance                  | $7k\Omega$                                  |  |  |  |  |
| Output Ripple, 100kHz Bandwidth    | $10 \mathrm{mV}_{\mathrm{P-P}}$             |  |  |  |  |
| 5kHz Bandwidth                     | 0.5mV rms                                   |  |  |  |  |
| ISOLATED POWER OUTPUT              |                                             |  |  |  |  |
| Voltage, No Load                   | ±7.5V                                       |  |  |  |  |
| Accuracy                           | ±10%                                        |  |  |  |  |
| Current                            | 400μA Total                                 |  |  |  |  |
| Regulation, No Load to Full Load   | 5%                                          |  |  |  |  |
| Ripple                             | $100 \mathrm{mV}_{\mathrm{P-P}}$            |  |  |  |  |
| POWER SUPPLY                       |                                             |  |  |  |  |
| Voltage, Rated Performance         | 15V±5%                                      |  |  |  |  |
| Voltage, Operating                 | 15V±10%                                     |  |  |  |  |
| Current, No Load ( $V_S = 15V$ )   | 10mA                                        |  |  |  |  |
| TEMPERATURE RANGE                  |                                             |  |  |  |  |
| Rated Performance                  | 0°C to 70°C                                 |  |  |  |  |
| Operating                          | −40°C to +85°C                              |  |  |  |  |
| Storage                            | −40°C to +85°C                              |  |  |  |  |
| PACKAGE DIMENSIONS                 |                                             |  |  |  |  |
| DIP Package (N)                    | 2.10"×0.700"×0.350"                         |  |  |  |  |

<sup>\*</sup>Test Schematic Figure 3 @ 100Hz Sine Wave @ $v_s(t) = 1000V$ .

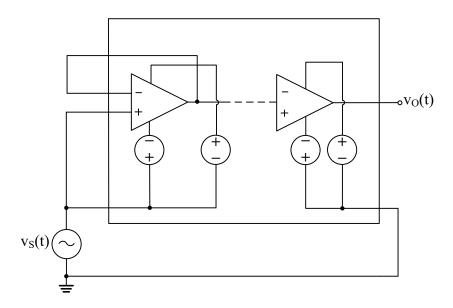



Figure 3. CMRR & CMTC Test Schematic

## PIN DESIGNATIONS

| Block             | Pin # | Pin Name        | Туре                    | Function Description                                                  |  |  |  |  |
|-------------------|-------|-----------------|-------------------------|-----------------------------------------------------------------------|--|--|--|--|
|                   | 1     | IN+             | Isolated analog input   | Isolated positive (Non-inverting) input                               |  |  |  |  |
| Isolated<br>Block | 2     | IN COM          | Isolated analog ground  | Isolated ground                                                       |  |  |  |  |
|                   | 3     | IN-             | Isolated analog input   | Isolated negative (inverting) input                                   |  |  |  |  |
|                   |       | +VISO           | I1-4-1                  | Isolated positive power supply output, +7.5V, referenced to           |  |  |  |  |
|                   | 6     | OUT             | Isolated power output   | pin 2 IN COM                                                          |  |  |  |  |
|                   | 5     | -VISO           | Icalated marron autmost | Isolated negative power supply output, approximately -7.0V,           |  |  |  |  |
|                   | 3     | OUT             | Isolated power output   | referenced to pin 2 IN COM                                            |  |  |  |  |
|                   | 4     | FB              | Isolated analog output  | Isolated op amp output as a feedback signal                           |  |  |  |  |
|                   | 37    | LO              | Analog ground           | Output voltage ground reference                                       |  |  |  |  |
| Local Block       | 38    | НІ              | Analog output           | Op amp output, equals to the voltage difference between FB and IN COM |  |  |  |  |
|                   | 31    | 15 V            | Analog input            | Positive 15V power supply input                                       |  |  |  |  |
|                   | 32    | POWER<br>RETURN | Analog input            | Power supply return                                                   |  |  |  |  |

### **RISE TIME**

1. Connect pin FB and pin IN-. Provide a  $-2V \sim +2V$  voltage to pin IN+. The rise time = 500ns.

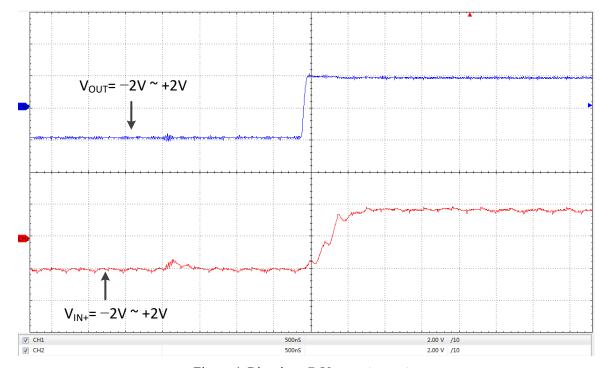



Figure 4. Rise time @  $V_{IN+} = -2V \sim +2V$ 

2. Connect pin FB and pin IN-. Provide a  $-5V \sim +5V$  voltage to pin IN+. The rise time = 1 $\mu$ s.

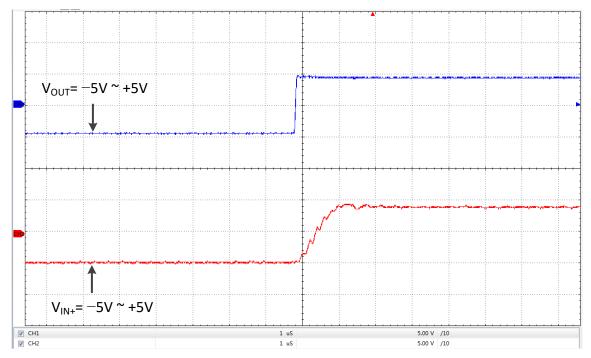



Figure 5. Rise time @  $V_{IN+} = -5V \sim +5V$ 

3. Connect pin FB and pin IN-. Provide a  $-5V \sim +5V$  voltage to pin IN+. The Frequency f = 500kHz.

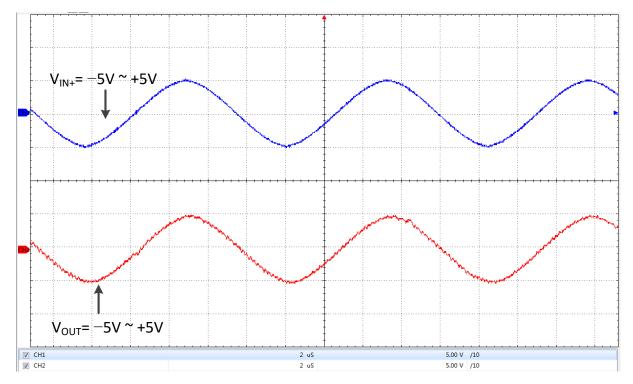



Figure 6. Frequency @  $V_{IN+} = -5V \sim +5V$ 

4. Connect pin FB and pin IN-. Provide a  $-5V \sim +5V$  voltage to pin IN+. The Frequency f = 50Hz.

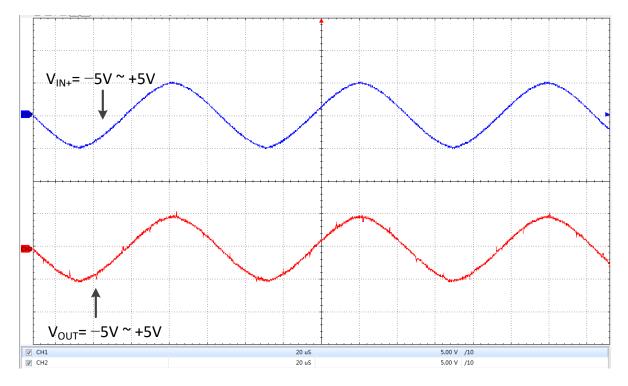



Figure 7. Frequency @  $V_{IN+} = -5V \sim +5V$ 

5. Connect pin FB and pin IN-. Provide a  $-5V \sim +5V$  voltage to pin IN+. The Frequency f = 100Hz.

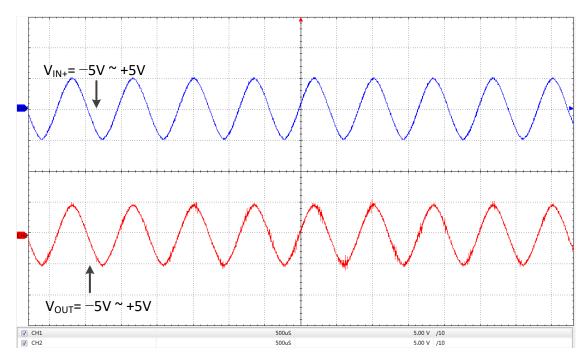



Figure 8. Frequency @  $V_{IN+} = -5V \sim +5V$ 

## **NONLINEARITY**

Connect pin FB and pin IN-. Provide a  $-5V \sim +5V$  voltage to pin IN+. The output voltage is as follows.

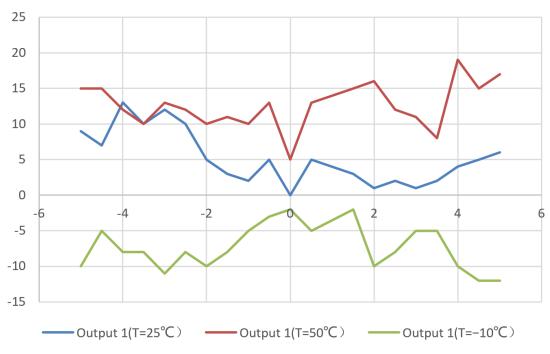



Figure 9. Nonlinearity

#### MECHANICAL DIMENSIONS

The dimensions of AD202KYATI in SIP package are shown in Figure 10.2.

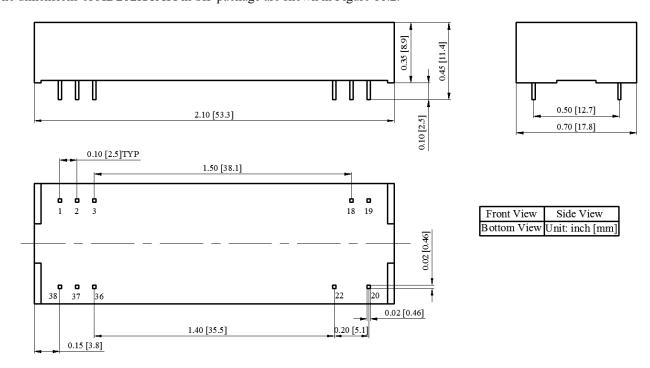



Figure 10.1. Dimensions of AD202JNATI & AD202KNATI DIP Package

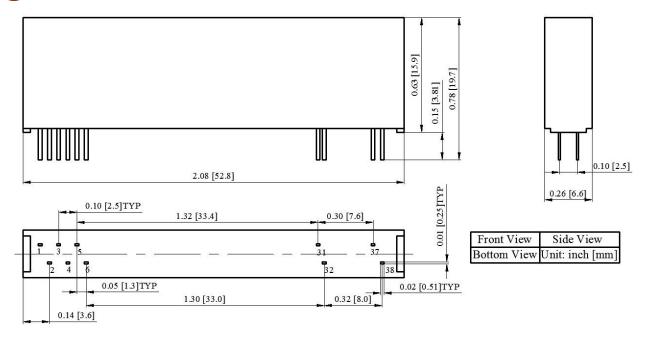



Figure 10.2. Dimensions of AD202JYATI & AD202KYATI SIP Package

### **NOTICE**

- 1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.
- ATI reserves the right to make changes to its products or to discontinue any product or service without notice and advise customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current and complete.
- 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
- 4. Customers are responsible for their applications using ATI products. In order to minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.
- 5. ATI does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI's publication of information regarding any third party's products or services does not constitute ATI's approval, warranty or endorsement thereof.
- 6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.