

64 Analog Input Telemetry Controller for Space

Description

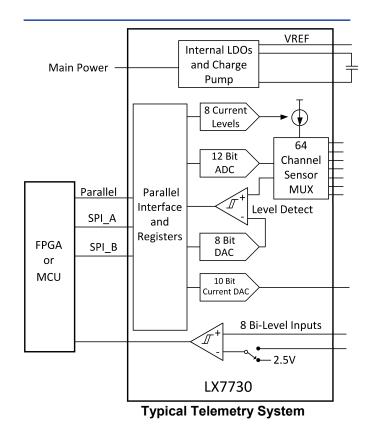
The <u>LX7730</u> is a spacecraft telemetry manager that is radiation-hardened by design and works with either a space FPGA controller such as <u>RTG4</u>, <u>RTAX-S/SL</u>, and <u>RT PolarFire</u>, or a space MCU such as <u>SAMRH71F20</u>, <u>SAMRH707F18</u>, <u>SAMV71Q21RT</u>, and <u>SAM3X8ERT</u>.

The LX7730 contains a 64 universal input multiplexer that can be configured for a mix of differential and/or single ended sensor inputs. The internal programmable current source can be directed to any of the 64 universal inputs. The universal inputs can be acquired by the internal 12-bit ADC at a sample rate up to 13kHz. The universal inputs also function as variable bi-level inputs with the threshold set by an internal 8-bit DAC. There is an additional 10-bit current DAC with complementary outputs. Finally, there are 8 fixed threshold bi-level inputs with logic outputs.

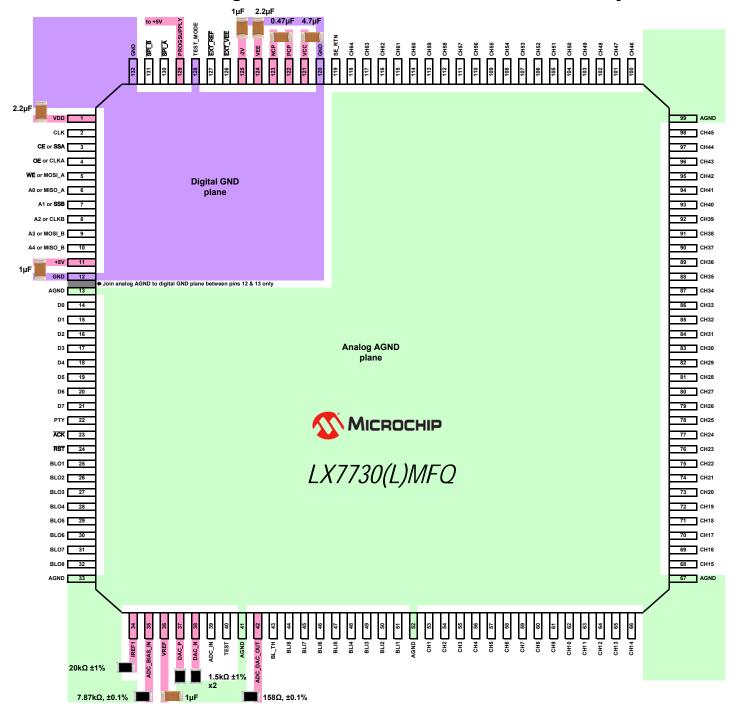
The LX7730 is register programmable with 17 addressable 8-bit registers. Two options are available for communication with the host system controller. First there is an 8-bit parallel bus with 5 address bits, a parity bit, and a read/write bit that can communicate at a speed of up to 25Mword/s. The second option is a pair of 12.5Mbit/s SPI interfaces that support redundant communication to two different hosts.

The LX7730 has enable registers that allow most of the device to be shut down to reduce power consumption, and supports cold sparing on its signal pins. The dielectric isolated process is failsafe.

The LX7730LMFQ offers lower guaranteed operating and standby supply currents than the LX7730MFQ, as shown in the Electrical Characteristics. Operation is identical in all other respects. All other references to LX7730 in this data sheet apply to the LX7730LMFQ, LX7730MFQ, and LX7730LMLF.

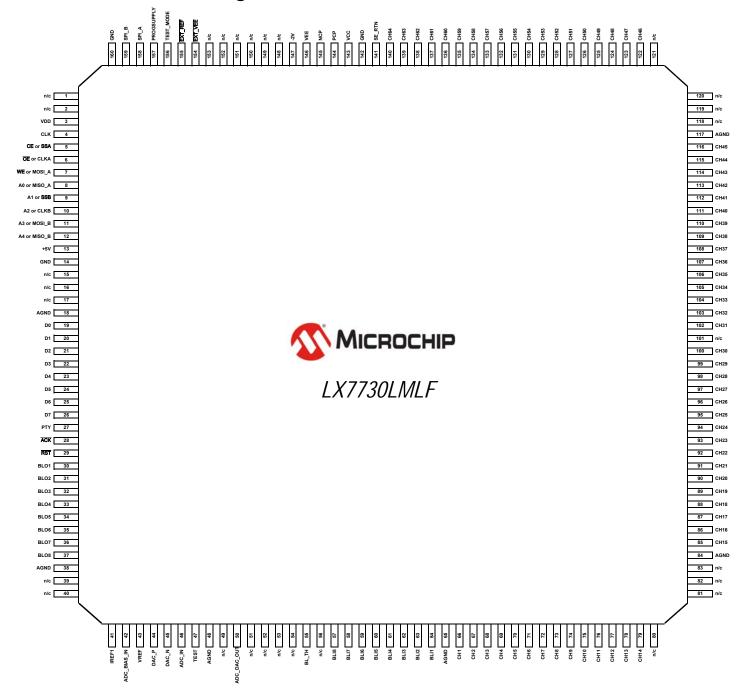

The LX7730(L)MFQ is packaged in a 132-pin hermetic ceramic quad flat pack. The LX7730LMLF is packaged in a lead-free 160 pin non-hermetic plastic quad flat pack qualified to JESD47. Both parts operate over a -55°C to 125°C temperature range, and are radiation tolerant to a minimum of 100krad(Si) TID and a minimum of 50krad(Si) ELDRs, as well as single event effects.

Features


- 64 channel analog input multiplexer
- Break-Before-Make switching
- 13ksps 12-bit ADC
- 1% precision 5V voltage reference
- 3% precision adjustable current source
- Threshold monitoring
- 8 bi-level analog inputs and logic outputs
- 8 additional bi-level inputs from the multiplexer
- 10-bit DAC
- Parallel interface or dual SPI interface
- Radiation tolerant: 100krad(Si) TID, 50krad(Si) ELDRS, SEL immune up to 87MeV.cm²/mg and 125°C (fluence of 10⁸ particles/cm²)

Applications

- Spacecraft health monitoring
- Attitude control
- Payload equipment



1 CQFP-132 Pin Configuration and Pinout with Recommended Layout

- Note 1. The layout example shows split planes for AGND and GND. Separate AGND and GND planes can be used
- Note 3. The pins marked n/c on the LQFP-160 pinout are not bonded internally
- Note 4. Connect the LQFP-160 exposed pad to the AGND signal ground pins 18, 38, 48, 65, 84, and 117

2 LQFP-160 Pin Configuration and Pinout

3 Ordering Information (subject to export compliance under EAR9A515.e)

Operating Temperature	Package Type	Package	Part Number	SMD Number	Flow	Shipping Type
	Hermetic		LX7730LMFQ-V	SMD5962-1721902VXC	MIL-PRF-38535 Class V	
-55°C	Ceramic Ceramic Plastic	CQFP 132L	LX7730LMFQ-Q	SMD5962-1721902QXC	MIL-PRF-38535 Class Q	
to			LX7730LMFQ-ES ¹	-	Engineering Sample	Tray
125°C			MECH-SAMPLE-CQFP132	-	Empty package sample	ITay
		Plastic LQFP 160L	LX7730LMLF	-	Single temperature	
	i idslic	LQII 100L	MECH-SAMPLE-LQFP160	-	Empty package sample	

¹ Engineering samples are tested at room temperature only, and do not undergo thermal, environmental, or hermeticity testing

4 CQFP-132 Pin Numbering and Pin Descriptions

132L	Name	Pin Type	Pin Function	Description
1	VDD	Power	I/O Supply	Connect to the external logic controller's (FPGA, MCU) I/O power supply (2.25V to 5.5V) to set the I/O logic level for all logic I/Os. Bypass close to the pin with a 2.2µF capacitor to GND
2	CLK	Logic Input (1MΩ to GND)	ADC Clock	Connect a 125kHz to 500kHz clock to operate the ADC logic
3	CE, or SSA	Logic Input (1MΩ to VDD)	Chip Enable SPI Select A	Active low chip enable for the parallel interface (SPI_A = SPI_B = 1) Active low SPI select for SPI channel A interface (SPI_A = 0, SPI_B = 1)
4	OE, or CLKA	Logic Input (1MΩ to VDD)	Output Enable Clock A	Active low output enable (read) for the parallel interface (SPI_A = SPI_B = 1) Clock input for SPI channel A interface (SPI_A = 0, SPI_B = 1)
5	WE, or MOSI_A	Logic Input (1MΩ to VDD)	Write Enable MOSI A	Active low write enable for the parallel interface (SPI_A = SPI_B = 1) Data input for SPI channel A interface (SPI_A = 0, SPI_B = 1)
6	A0, or MISO_A	Logic I/O (1MΩ to GND)	Address A0 MISO A	Register address bit A0 (LSB) for the parallel interface (SPI_A = SPI_B = 1) Data output for SPI channel A interface (SPI_A = 0, SPI_B = 1)
7	A1, or SSB	Logic Input (1MΩ to VDD)	Address A1 SPI Select B	Register address bit A1 for the parallel interface (SPI_A = SPI_B = 1) Active low SPI select for SPI channel B interface (SPI_A = 1, SPI_B = 0)
8	A2, or CLKB	Logic Input (1MΩ to GND)	Address A2 Clock B	Register address bit A2 for the parallel interface (SPI_A = SPI_B = 1) Clock input for SPI channel B interface (SPI_A = 1, SPI_B = 0)
9	A3, or MOSI_B	Logic Input (1MΩ to GND)	Address A3 MOSI B	Register address bit A3 for the parallel interface (SPI_A = SPI_B = 1) Data input for SPI channel B interface (SPI_A = 1, SPI_B = 0)
10	A4, or MISO_B	Logic I/O (1MΩ to GND)	Address A4 MISO B	Register address bit A4 (MSB) for the parallel interface (SPI_A = SPI_B = 1) Data output for SPI channel B interface (SPI_A = 1, SPI_B = 0)
11	+5V	Power	Internal +5V Supply	Bypass close to the pin with a 1µF capacitor to GND. Optionally overdrive pin with an external 5.5V ±0.25V supply which shuts down the internal regulator
12	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND here at pin 12 to AGND at pin 13 as a star point
13	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND here at pin 13 to GND at pin 12 as a star point
14 - 21	D0 - D7	Logic I/O (1M Ω to GND)	Data Bus	Data bus D0 (LSB) to D7 (MSB) for the parallel interface
22	PTY	Logic I/O (1M Ω to GND)	Data Bus Parity	Even parity bit for the parallel interface combined address (A0 - A4), data (D0 - D7) bits, and the PTY signal. A write parity error sets the ACK output high
23	ACK	Logic Output	Data Bus Write Acknowledge	Data write acknowledge output for the serial and parallel interfaces. ACK is active low to validate data (indicate no parity error) for serial or parallel writes to LX7730
24	RESET	Logic I/O	System Reset	Active low input resets the LX7730 internal settings to the POR state. An optional capacitor to GND extends the internal reset time
25 - 28	BLO1 - BLO4	Logic Outputs	Bi-Level Outputs 1 to 4	Output of fixed threshold bi-level monitor (comparator) input BLI1, BLI2, BLI3 and BLI4 at pins 51, 50, 49, and 48 respectively
29	BLO5	Logic Output	Bi-Level Output 5	Output of fixed threshold bi-level monitor (comparator) input BLI5 at pin 47 When the LX7730 is in reset state (either RESET pin 24 held active low, or Reset register 0 contains 0x6A) then output is instead VCC UVLO status, Power Status Register 2 bit D2 (Table 18 on page 40)
30	BLO6	Logic Output	Bi-Level Output 6	Output of fixed threshold bi-level monitor (comparator) input BLI6 at pin 46 When the LX7730 is in reset state (either RESET pin 24 held active low, or Reset register 0 contains 0x6A) then output is instead VEE UVLO status, Power Status Register 2 bit D1 (Table 18 on page 40)
31	BLO7	Logic Output	Bi-Level Output 7	Output of fixed threshold bi-level monitor (comparator) input BLI7 at pin 45 When the LX7730 is in reset state (either RESET pin 24 held active low, or Reset register 0 contains 0x6A) then output is instead +5V UVLO status, Power Status Register 2 bit D0 (Table 18 on page 40)
32	BLO8	Logic Output	Bi-Level Output 8	Output of fixed threshold bi-level monitor (comparator) input BLI8 at pin 44 When the LX7730 is in reset state (either RESET pin 24 held active low, or Reset register 0 contains 0x6A) then output is instead Power On Enable status, which is high when the internal logic is ready after power-up
33	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13

132L	Name	Pin Type	Pin Function	Description
34	IREF1	Analog Input	Current Reference Bias Resistor	Connect a $20k\Omega$ ±1% resistor from IREF1 to AGND pin 33 to set the internal reference current. Minimize the track length from the resistor to pin 34, and route a direct track to AGND pin 33. The voltage at IREF1 is 1.6V
35	ADC_ BIAS_IN	Analog Input	ADC Bias Resistor	Connect a $7.87k\Omega$, $\pm 0.1\%$ resistor from ADC_BIAS_IN to AGND pin 33 to set the internal precision current reference for the ADC. Minimize the track length to pin 35, and route a direct track to AGND pin 33. The voltage at ADC_BIAS_IN is $1.6V$
36	VREF	Analog I/O	Internal VREF Output External VREF Input	To use the internal +5V ±1% reference voltage, connect a 1µF capacitor from VREF to AGND pin 33 and tie EXT_REF pin 127 to +5V. To use an external reference voltage up to 5.5V, connect the external reference to VREF, and tie EXT_REF pin 127 to either GND or AGND
37	DAC_P	Analog Output	10-Bit Current DAC (+) Output	Positive output for the 10-bit current DAC. The code range 0x000 to 0x3FF in the 10-bit DAC registers 14 and 15 (Table 34 on page 56) sources an increasing output current from 0 to 2mA. Terminate DAC_P with a resistor ≤1.5kΩ to AGND to develop a nominal output voltage ≤3V maximum at code 0x3FF. To assign the DAC_P output alternatively to internal use as the current source for the analog input multiplexer, set Current Mux Level register 5 bit D7 = 0 (Table 25 on page 47) and leave DAC_P open
38	DAC_N	Analog Output	10-Bit Current DAC (-) Output	Negative output for the 10-bit current DAC. The code range 0x000 to 0x3FF in the 10-bit DAC registers 14 and 15 (Table 34 on page 56) sources a decreasing output current from 2 to 0mA. Terminate DAC_N with a resistor ≤1.5kΩ to AGND to develop a nominal output voltage ≤3V maximum at code 0x000. If the 10-bit DAC is to be assigned to internal use as the current source for the analog input multiplexer (Current Mux Level register 5 bit D7 = 0), terminate DAC_N to either GND or AGND
39	ADC_IN	Analog I/O	AFE Output ADC Input	Optionally connect a redundant ADC here to monitor the final output from the complete AFE multiplexer-gain-filter system. Alternatively, to assert a unipolar input signal with 0 to 2V range directly to the ADC, disable the AFE by setting ADC Control register bit D0 = 1 (Table 28 on page 50)
40	TEST	Factory Use	Test	Internally bonded test node. Leave this pin floating
41	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
42	ADC_ DAC_ OUT	Analog Input	DAC bias resistor	Connect a 158Ω, ±0.1% resistor from ADC_ DAC_OUT to AGND pin 41 to provide the precision load for the ADC's current output DAC. Minimize the track length to pin 42, and route a direct track to AGND pin 41. The voltage at ADC_DAC_OUT ranges from 1V minimum to 2V maximum during an ADC conversion, and returns to 0V at the end of the conversion
43	BL_TH	Analog Input	Bi-Level (-) external threshold input	Optional external negative (-) threshold voltage for the fixed threshold bi-level monitors (comparators) BL1 to BLI8 To use an external reference voltage between 0.1V and 4.9V on BL_TH, set bit B7 in the Bi-Level Bank register 12 (Table 32 on page 54) To use the internal 2.5V ±50mV threshold, clear bit B7 in the Bi-Level Bank register 12, and connect the BL_TH pin to either GND or AGND
44 - 51	BLI8 - BLI1	Analog Inputs	Bi-Level (+) inputs 8 to 1	Fixed threshold bi-level monitor (comparator) positive (+) inputs 8 to 1 which are compared against either an internal 2.5V ±50mV threshold, or an external voltage between 0.1V and 4.9V on the BL_TH pin 43
52	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
53 - 66	CH1 - CH14	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output
67	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13
68-98	CH15 - CH45	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output
99	AGND	Ground	Analog Ground	All AGND pins 13, 33, 41, 52, 67, and 99 must be used, connected together via a plane or split-plane on the PCB, and used for termination of analog signals only. Only join AGND to GND at pins 12 and 13

132L	Name	Pin Type	Pin Function	Description
100 - 118	CH46 - CH64	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output
119	SE_RTN	Analog Input	Sensor Return	Common return for single ended sensor/signal inputs. Typically connected to AGND, or a remote signal ground in the range ±10V for differential sensor/signal inputs. Tie to AGND if unused
120	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 12 and 13
121	VCC	Power	Input Supply	Connect to the main power supply (11.4V to 16V). Bypass close to the pin with a $4.7\mu F$ capacitor to GND
122	PCP	Output	Charge Pump Flying Capacitor non- inverting	Flying capacitor positive node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 126 tied to +5V), connect a 0.47µF capacitor between this pin and the NCP pin. PCP swings between GND and VCC at 200kHz. If an external VEE supply is used (EXT_VEE pin 126 tied to either GND or AGND), leave PCP open
123	NCP	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 126 tied to +5V), connect a 0.47µF capacitor between this pin and the PCP pin. NCP swings between GND and VEE at 200kHz. If an external VEE supply is used (EXT_VEE pin 126 tied to either GND or AGND), leave NCP open
124	VEE	Power	-10V to -16V Supply	If the internal inverting charge pump is used to generate VEE (EXT_VEE pin 126 tied to +5V), bypass close to the pin with a 2.2µF capacitor to GND (not AGND) If an external VEE supply is used (EXT_VEE pin 126 tied to GND), connect to an external voltage in the range -10V to -16V, and bypass close to the pin with a 2.2µF capacitor to either GND or AGND
125	-2V	Power	Internal -2V Supply	Bypass close to the pin with a 1µF capacitor to GND
126	EXT_VEE	Logic Input (1MΩ to +5V)	VEE Select	To use the internal inverting charge pump to generate VEE, either leave EXT_VEE open or tie EXT_VEE to +5V. To use an external negative supply on VEE pin 124, tie EXT_VEE to either GND or AGND
127	EXT_REF	Logic Input (1MΩ to +5V)	VREF Select	To use the internal +5V ±1% reference voltage, either leave EXT_REF open or tie EXT_REF to +5V. To use an external reference voltage on VREF pin 36, tie EXT_REF to either GND or AGND
128	TEST_ MODE	Factory Use	Test	Internally bonded test node. Connect to either GND or AGND
129	PROG SUPPLY	Factory Use	Test	Internally bonded test node. Connect to +5V pin 11
130	SPI_A	Logic Input (1MΩ to VDD)	SPI Interface A Enable	A falling edge on the SPI_A input selects the SPI channel A interface and deselects both the parallel interface and the SPI channel B interface. The SPI channel A interface remains selected while active low. Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high. See the Digital Interfaces section 18 on page 33
131	SPI_B	Logic Input (1MΩ to VDD)	SPI Interface B Enable	A falling edge on the SPI_B input selects the SPI channel B interface and deselects both the parallel interface and the SPI channel A interface. The SPI channel B interface remains selected while active low. Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high. See the Digital Interfaces section 18 on page 33
132	GND	Ground	Digital and Power Ground	All GND pins 12, 120, and 132 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 12 and 13

5 LQFP-160 Pin Numbering and Pin Descriptions

Pin	Name	Pin Type	Pin Function	Description
1-2	n/c	riii Type	FIII FUNCTION	Pins are not bonded
3	VDD	Power	I/O Supply	Connect to the external logic controller's (FPGA, MCU) I/O power supply (2.25V to 5.5V) to set the I/O logic level for all logic I/Os. Bypass close to the pin with a 2.2µF capacitor to GND
4	CLK	Logic Input (1MΩ to GND)	ADC Clock	Connect a 125kHz to 500kHz clock to operate the ADC logic
5	CE, or SSA	Logic Input (1MΩ to VDD)	Chip Enable SPI Select A	Active low chip enable for the parallel interface (SPI_A = SPI_B = 1) Active low SPI select for SPI channel A interface (SPI_A = 0, SPI_B = 1)
6	OE, or CLKA	Logic Input (1MΩ to VDD)	Output Enable Clock A	Active low output enable (read) for the parallel interface (SPI_A = SPI_B = 1) Clock input for SPI channel A interface (SPI_A = 0, SPI_B = 1)
7	WE, or MOSI_A	Logic Input (1MΩ to VDD)	Write Enable MOSI A	Active low write enable for the parallel interface (SPI_A = SPI_B = 1) Data input for SPI channel A interface (SPI_A = 0, SPI_B = 1)
8	A0, or MISO_A	Logic I/O (1MΩ to GND)	Address A0 MISO A	Register address bit A0 (LSB) for the parallel interface (SPI_A = SPI_B = 1) Data output for SPI channel A interface (SPI_A = 0, SPI_B = 1)
9	A1, or SSB	Logic Input (1MΩ to VDD)	Address A1 SPI Select B	Register address bit A1 for the parallel interface (SPI_A = SPI_B = 1) Active low SPI select for SPI channel B interface (SPI_A = 1, SPI_B = 0)
10	A2, or CLKB	Logic Input (1MΩ to GND)	Address A2 Clock B	Register address bit A2 for the parallel interface (SPI_A = SPI_B = 1) Clock input for SPI channel B interface (SPI_A = 1, SPI_B = 0)
11	A3, or MOSI B	Logic Input (1MΩ to GND)	Address A3 MOSI B	Register address bit A3 for the parallel interface (SPI_A = SPI_B = 1) Data input for SPI channel B interface (SPI_A = 1, SPI_B = 0)
12	A4, or MISO_B	Logic I/O (1MΩ to GND)	Address A4 MISO B	Register address bit A4 (MSB) for the parallel interface (SPI_A = SPI_B = 1) Data output for SPI channel B interface (SPI_A = 1, SPI_B = 0)
13	+5V	Power	Internal +5V Supply	Bypass close to the pin with a 1µF capacitor to GND. Optionally overdrive pin with an external 5.5V ±0.25V supply which shuts down the internal regulator
14	GND	Ground	Digital and Power Ground	All GND pins 14, 142, and 160 must be used, connected together via a plane or split-plane on the PCB and used for connection and termination of digital and power external components. Only join GND here at pin 14 to AGND at pin 18 as a star point, including the un-bonded pins 15 to 17 if convenient
15-17	n/c	-	-	Pins are not bonded
18	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND here at pin 18 to GND at pin 14 as a star point
19 - 26	D0 - D7	Logic I/O (1MΩ to GND)	Data Bus	Data bus D0 (LSB) to D7 (MSB) for the parallel interface
27	PTY	Logic I/O (1M Ω to GND)	Data Bus Parity	Even parity bit for the parallel interface combined address (A0 - A4), data (D0 - D7) bits, and the PTY signal. A write parity error sets the ACK output high
28	ACK	Logic Output	Data Bus Write Acknowledge	Data write acknowledge output for the serial and parallel interfaces. ACK is active low to validate data (indicate no parity error) for serial or parallel writes to LX7730
29	RESET	Logic I/O	System Reset	Active low input resets the LX7730 internal settings to the POR state. An optional capacitor to GND extends the internal reset time
30-33	BLO1 - BLO4	Logic Outputs	Bi-Level Outputs 1 to 4	Output of fixed threshold bi-level monitor (comparator) input BLI1, BLI2, BLI3 and BLI4 at pins 64, 63, 62, and 61 respectively
34	BLO5	Logic Output	Bi-Level Output 5	Output of fixed threshold bi-level monitor (comparator) input BLI5 at pin 60 When the LX7730 is in reset state (either RESET pin 29 held active low, or Reset register 0 contains 0x6A) then output is instead VCC UVLO status (Table 18 on page 40)
33	BLO6	Logic Output	Bi-Level Output 6	Output of fixed threshold bi-level monitor (comparator) input BLI6 at pin 59 When the LX7730 is in reset state (either RESET pin 29 held active low, or Reset register 0 contains 0x6A) then output is instead VEE UVLO status (Table 18 on page 40)
36	BLO7	Logic Output	Bi-Level Output 7	Output of fixed threshold bi-level monitor (comparator) input BLI7 at pin 58 When the LX7730 is in reset state (either RESET pin 29 held active low, or Reset register 0 contains 0x6A) then output is instead +5V UVLO status (Table 18 on page 40)
37	BLO8	Logic Output	Bi-Level Output 8	Output of fixed threshold bi-level monitor (comparator) input BLI8 at pin 57 When the LX7730 is in reset state (either RESET pin 29 held active low, or Reset register 0 contains 0x6A) then output is instead Power On Enable status, which is high when the internal logic is ready after power-up

Pin	Name	Pin Type	Pin Function	Description	
38	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND to GND at pins 18 and 14	
39-40	n/c	-	-	Pins are not bonded	
41	IREF1	Analog Input	Current Reference Bias Resistor	Connect a $20k\Omega \pm 1\%$ resistor from IREF1 to AGND pin 38 to set the internal reference current. Minimize the track length from the resistor to pin 41, and route a direct track to AGND pin 38. The voltage at IREF1 is 1.6V	
42	ADC_ BIAS_IN	Analog Input	ADC Bias Resistor	Connect a $7.87 k\Omega$, $\pm 0.1\%$ resistor from ADC_BIAS_IN to AGND pin 38 to set the internal precision current reference for the ADC. Minimize the track length to pin 42, and route a direct track to AGND pin 38. The voltage at ADC_BIAS_IN is 1.6V	
43	VREF	Analog I/O	Internal VREF Output External VREF Input	To use the internal +5V ±1% reference voltage, connect a 1μF capacitor from VREF to AGND pin 38 and tie EXT_REF pin 155 to +5V. To use an external reference voltage up to 5.5V, connect the external reference to VREF, and tie EXT_REF pin 155 to either GND or AGND	
44	DAC_P	Analog Output	10-Bit Current DAC (+) Output	Positive output for the 10-bit current DAC. The code range 0x000 to 0x3FF in the 10-bit DAC registers 14 and 15 (Table 34 on page 56) sources an increasing output current from 0 to 2mA. Terminate DAC_P with a resistor ≤1.5kΩ to AGND to develop a nominal output voltage ≤3V maximum at code 0x3FF. To assign the DAC_P output alternatively to internal use as the current source for the analog input multiplexer, set Current Mux Level register 5 bit D7 = 0 (Table 25 on page 47) and leave DAC_P open	
44	DAC_N	Analog Output	10-Bit Current DAC (-) Output	Negative output for the 10-bit current DAC. The code range 0x000 to 0x3FF in the 10-bit DAC registers 14 and 15 (Table 34 on page 56) sources a decreasing output current from 2 to 0mA. Terminate DAC_N with a resistor ≤1.5kΩ to AGND to develop a nominal output voltage ≤3V maximum at code 0x000. If the 10-bit DAC is to be assigned to internal use as the current source for the analog input multiplexer (Current Mux Level register 5 bit D7 = 0), terminate DAC_N to either GND or AGND	
45	ADC_IN	Analog I/O	AFE Output ADC Input	Optionally connect a redundant ADC here to monitor the final output from the complete AFE multiplexer-gain-filter system.	
46	TEST	Factory Use	Test	Internally bonded test node. Leave this pin floating	
48	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND to GND at pins 18 and 14	
49	n/c	-	-	Pin is not bonded	
50	ADC_ DAC_ OUT	Analog Input	DAC bias resistor	Connect a 158Ω , $\pm 0.1\%$ resistor from ADC_DAC_OUT to AGND pin 48 to provide the precision load for the ADC's current output DAC. Minimize the track length to pin 50, and route a direct track to AGND pin 48. The voltage at ADC_DAC_OUT ranges from 1V minimum to 2V maximum during an ADC conversion, and returns to 0V at the end of the conversion	
51-54	n/c	-	-	Pins are not bonded	
55	BL_TH	Analog Input	Bi-Level (-) external threshold input	Optional external negative (-) threshold voltage for the fixed threshold bi-level monitors (comparators) BL1 to BLI8 To use an external reference voltage between 0.1V and 4.9V on BL_TH, set bit B7 in the Bi-Level Bank register 12 (Table 32 on page 54) To use the internal 2.5V ±50mV threshold, clear bit B7 in the Bi-Level Bank register 12, and connect the BL_TH pin to either GND or AGND	
56	n/c		-	Pin is not bonded	
57-64	BLI8 - BLI1	Analog Inputs	Bi-Level (+) inputs 8 to 1	Fixed threshold bi-level monitor (comparator) positive (+) inputs 8 to 1 which are compared against either an internal 2.5V ±50mV threshold, or an external voltage between 0.1V and 4.9V on the BL_TH pin 55	
65	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND to GND at pins 18 and 14	
66-79	CH1 - CH14	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output	
80-83	n/c	-	-	Pins are not bonded	

Pin	Name	Pin Type	Pin Function	Description	
84	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND to GND at pins 18 and 14	
85-100	CH15 - CH30	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output	
101	n/c	-	-	Pin is not bonded	
102-116	CH31 - CH45	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output	
117	AGND	Ground	Analog Ground	All AGND pins 18, 38, 48, 65, 84, and 117 must be used, connected together and to the exposed pad for the termination of analog signals. Only join AGND to GND at pins 18 and 14	
118-121	n/c	-	-	Pins are not bonded	
122-140	CH46 - CH64	Analog I/Os	ADC Inputs, Current Source	Sensor/signal acquisition inputs up to ±10V, selectable current source output	
141	SE_RTN	Analog Input	Sensor Return	Common return for single ended sensor/signal inputs. Typically connected to AGND, or a remote signal ground in the range ±10V for differential sensor/signal inputs. Tie to AGND if unused	
142	GND	Ground	Digital and Power Ground	All GND pins 14, 142, and 160 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 14 and 18	
143	VCC	Power	Input Supply	Connect to the main power supply (11.4V to 16V). Bypass close to the pin with a $4.7\mu F$ capacitor to GND	
144	PCP	Output	Charge Pump Flying Capacitor non- inverting	Flying capacitor positive node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 154 tied to +5V), connect a 0.47µF capacitor between this pin and the NCP pin. PCP swings between GND and VCC at 200kHz. If an external VEE supply is used (EXT_VEE pin 154 tied to either GND or AGND), leave PCP open	
145	NCP	Output	Charge Pump Flying Capacitor inverting	Flying capacitor negative node for the internal VEE inverting charge pump. If the internal VEE charge pump is used (EXT_VEE pin 154 tied to +5V), connect a 0.47µF capacitor between this pin and the PCP pin. NCP swings between GND and VEE at 200kHz. If an external VEE supply is used (EXT_VEE pin 154 tied to either GND or AGND), leave NCP open	
146	VEE	Power	-10V to -16V Supply	If the internal inverting charge pump is used to generate VEE (EXT_VEE pin 154 tied to +5V), bypass close to the pin with a 2.2µF capacitor to GND (not AGND) If an external VEE supply is used (EXT_VEE pin 154 tied to GND), connect to an external voltage in the range -10V to -16V, and bypass close to the pin with a 2.2µF capacitor to either GND or AGND	
147	-2V	Power	Internal -2V Supply	Bypass close to the pin with a 1µF capacitor to GND	
148-153	n/c	-	-	Pins are not bonded	
154	EXT_VEE	Logic Input (1MΩ to +5V)	VEE Select	To use the internal inverting charge pump to generate VEE, either leave EXT_VEE open or tie EXT_VEE to +5V. To use an external negative supply on VEE pin 146, tie EXT_VEE to either GND or AGND	
155	EXT_REF	Logic Input (1MΩ to +5V)	VREF Select	To use the internal +5V ±1% reference voltage, either leave EXT_REF open or tie EXT_REF to +5V. To use an external reference voltage on VREF pin 43, tie EXT_REF to either GND or AGND	
156	TEST_ MODE	Factory Use	Test	Internally bonded test node. Connect to either GND or AGND	
157	PROG SUPPLY	Factory Use	Test	Internally bonded test node. Connect to +5V pin 13	
158	SPI_A	Logic Input (1MΩ to VDD)	SPI Interface A Enable	A falling edge on the SPI_A input selects the SPI channel A interface and deselects both the parallel interface and the SPI channel B interface. The SPI channel A interface remains selected while active low. Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high. See the Digital Interfaces section 18 on page 33	

Pin	Name	Pin Type	Pin Function	•		
159	SPI_B	Logic Input (1MΩ to VDD)	SPI Interface B Enable	A falling edge on the SPI_B input selects the SPI channel B interface and deselects both the parallel interface and the SPI channel A interface. The SPI channel B interface remains selected while active low. Select the parallel interface instead of one of the SPI channels by taking both the SPI_A and SPI_B inputs high. See the Digital Interfaces section 18 on page 33		
160	GND	Ground	Digital and Power Ground	All GND pins 14, 142, and 160 must be used, connected together via a plane or split-plane on the PCB, and used for connection and termination of digital and power external components. Only join GND to AGND at pins 14 and 18		
EP	Exposed Pad		ad ad	Connect the exposed pad to the AGND signal ground pins 18, 38, 48, 65, 84, and 117		

Notes

^{1.} Pins that are shown as not bonded may be connected to any potential, such as an adjacent pin or GND, subject to the creepage and clearance requirements of the PCB layout

6 Absolute Maximum Ratings

Stresses above those listed in ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Parameter	Min	Max	Units
Main Power (VCC) to GND	-0.5	20	V
Logic Supply Voltage (VDD) to GND	-0.5	7	V
+5V (current internally limited)	-0.5	7	V
VEE (current internally limited)	-20	+0.5	V
System Controller Interface (CLK, CE/SSA, OE/CLKA, WE/MOSI_A, A0/MISO_A, A1/SSB, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, PTY, ACK, RESET, BLO1 - BLO8, EXT_VEE, EXT_REF, TEST_MODE, PROGSUPPLY, SPI_A, and SPI_B) to GND	-0.5	7	V
Sensor Inputs (CH1 to CH64, SE_RTN) to GND (VCC = GND)	-20	20	V
Sensor Inputs (CH1 to CH64, SE_RTN) to GND (VCC = 11.4V to 16V)	-20	VCC + 2.5V	V
Bi-Level Inputs (BLI1 to BLI8) to GND	-10	10	V
Bi-Level Inputs Clamp Current	-5	5	mA
ADC_IN, DAC_N, DAC_P, VREF, BL_TH, and IREF1 to GND	-0.5	7	V
Operating Junction Temperature	-55	150	°C
Storage Junction Temperature	-65	160	°C
Peak Lead Solder Temperature (10 seconds)		260 (+0, -5)	°C

7 Electrostatic Discharge Ratings

JEDEC JEP155 states that 500V HBM allows safe manufacturing with a standard ESD controlled process.

ESD Test	Minimum Capability
HBM: Human Body Model, per MIL-STD-883 TM3015 System Controller Interface: CLK, CE/SSA, OE/CLKA, WE/MOSI_A, A0/MISO_A, A1/SSB, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, PTY, ACK, RESET, BLO1 - BLO8, EXT_VEE, EXT_REF, TEST_MODE, SPI_A, and SPI_B Power: VDD, +5V, VCC, PCP, NCP, VEE, -2V, PROGSUPPLY	±1000V
HBM: Human Body Model, per MIL-STD-883 TM3015 Analog channel inputs CH1 to CH64 and bi-level inputs BLI1 to BLI8	±500V

8 Operating Ratings

Performance is generally guaranteed over this range as further detailed below under Electrical Characteristics.

Parameter	Min	Max	Units
VCC	11.4	16	V
VDD	2.25	5.5	V
VEE (when externally applied)	-16	-10	V
+5V (current internally limited)	4.5	5.5	V
System Controller Interface (CLK, $\overline{\text{CE}/\text{SSA}}$, $\overline{\text{OE}/\text{CLKA}}$, $\overline{\text{WE}/\text{MOSI}}$ _A, A0/MISO_A, A1/ $\overline{\text{SSB}}$, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, PTY, $\overline{\text{ACK}}$, $\overline{\text{RESET}}$, BLO1 - BLO8, $\overline{\text{EXT}}$ _VEE, $\overline{\text{EXT}}$ _REF, TEST_MODE, PROGSUPPLY, $\overline{\text{SPI}}$ _A, and $\overline{\text{SPI}}$ _B) to GND	0	5.5	>
Sensor Inputs (CH1 to CH64, SE_RTN) to GND	-10	10	V
Bi-Level Inputs (BLI1 to BLI8) to GND	0	8	V
Bi-Level Inputs Clamp Current (under fault condition)	-3	3	mA
ADC_IN, DAC_N, DAC_P, VREF, BL_TH, and IREF1 to GND	0	5.5	V
Current from Reference Voltage (VREF)	0	10	mA

9 Electrical Characteristics

The following specifications apply over the operating ambient temperature of -55°C \leq T_A \leq 125°C except where otherwise noted with the following test conditions: VCC = 15V, VDD = 3.3V; R_{IREF} = 20k Ω ±1%; RADC_BIAS_IN = 7.87k Ω ±0.1%; RADC_DAC_OUT = 158 Ω ±0.1%; $\overline{EXT_VEE}$ open, $\overline{EXT_REF}$ open; CH1 and CH2 are selected with CH2 grounded; CLK = 500kHz. Register 7 = b'001010xx' setting 10kHz anti-alias filtering. Typical parameters refer to T_J = 25°C. Positive currents flow into pins. Specifications apply to both ceramic and plastic packaged parts unless otherwise stated.

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units
Internally Regulate	ed Voltages		•			
V_{VEE}	VEE voltage	VCC - VEE	1.5	2.6	3	V
V _{+5V_NOM}	+5V voltage		4.75	5.00	5.25	V
V _{REF_NOM}	VREF voltage		4.95	5.00	5.05	V
V _{IREF}	IREF pin voltage	$R_{IREF} = 20k\Omega$	1.568	1.600	1.632	V
Analog MUX	, ,			ı		
V _{CH# DIFF}	Differential Range	CH# to CH#, or CH# to SE_RTN	0		5	V
V _{CH#_COMM}	Common Mode Range	With V _{CH1} - V _{CH2} = 5V	-5		5	V
	Voltage Clamp	Clamp Current = 1mA (into pin) (1)	VCC	16	17	
V _{CH#_CLP_P}	(power applied)	Clamp Current = 1mA (out of pin)	-23	-20	-16	V
V	Voltage Clamp	Clamp Current = 1mA (into pin)	16	20	23	V
V _{CH#_CLP}	(VCC=VEE = 0)	Clamp Current = 1mA (out of pin)	-23	-20	-16	V
All to V _{CH1}	CH# to CH# Isolation	CH1 and SE_RTN selected; CH2 to CH64 each with series $2k\Omega$ to a 10kHz common source, CH1 with $2k\Omega$ to GND. SE_RTN to GND		60		dB
V _{ADC_IN}	Settling Time	Including dead time			10	μs
I _{CH#_BIAS}	Bias Current	VCH1= -5V to 5V	-200	0	200	nA
I _{CH#_LEAK}	Leakage Current	VCH1= -5V to 5V; IC powered off	-200	0	200	nA
I _{SE_RTN}	Bias Current	VSE_RTN= -5V to 5V	-200	0	200	nA
I _{SE_RTN}	Leakage Current	VSE_RTN= -5V to 5V; IC powered off	-200	0	200	nA
Programmable Cui	rrent Source					
I _{CH#_FSC(ceramic)} I _{CH#_FSC(plastic)}	- Full scale current Integral nonlinearity	Register 5 Use DAC bit D7 = 0, Register 5 Double bit D3 = 0	1880 1830	1940	2000 2010	-
I _{CH#_IN}			-7.5	0	7.5	
I _{CH#_DN}	Differential nonlinearity		-7.5	0	7.5	
I _{CH#_FSC_DW(ceramic)}			3710	-	3950	
I _{CH#_FSC_DW(plastic)}	Full scale current	Register 5 Use DAC bit D7 = 0,	3610	3830	3970	- μΑ
I _{CH#_IN_DW}	Integral nonlinearity	Register 5 Double bit D3 = 1	-15	0	15	
I _{CH# DN DW}	Differential nonlinearity		-15	0	15	
I _{CH# DAC31(ceramic)}	40 1-4 040 4- 04	Denister Ciles DAO hit D7 4	290	200	310	
I _{CH# DAC31(plastic)}	10-bit DAC = code 31	Register 5 Use DAC bit D7 = 1	285	300	315	
I _{CH#_IN_DAC(ceramic)}	Integral nonlinearity	Register 5 Use DAC bit D7 = 1	-2	0	2	1
I _{CH#_IN_DAC(plastic)}	10-bit DAC codes 0 to 31	Using {DAC_D9 : DAC_D0} codes in the	-2.5	U	2.5	
I _{CH#_DN_DAC(ceramic)}	Differential nonlinearity	Register 14 & 15 set from b'00000000 00' to	-2	0	2	
I _{CH#_DN_DAC(plastic)}	10-bit DAC codes 0 to 31	b'00000111 11' (0 to 31)	-2.5	U	2.5	
Adjustable thresho	old Bi-Level MUX and 8-Bit	DAC				
V _{DAC8_MAX}	Threshold DAC Max Output	Using code value of 255/255	4.95	5.00	5.05	V
V _{DAC8_LSB}	Threshold DAC LSB Weight			19.5		mV
V _{DAC8_IL}	DAC Integral Linearity	Hoine and a 20 to 240 hast fit straight in	-1		1	LSB
V _{DAC8_OFF}	Offset error	Using codes 20 to 240, best fit straight line	-10		10	mV
V _{DAC8_DL}	DAC Differential Linearity		-0.75		0.75	LSB
V _{CMP#_HYS}	Hysteresis	Rising threshold = DAC output Falling threshold = (DAC output - V _{CMP# HYS})	75	112	150	mV

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units
10-Bit Current DA	AC .	•				
I _{DAC10 PFS(ceramic)}	DAC B cutruit full cools		-2.06	2.00	-1.94	m A
I _{DAC10_PFS(plastic)}	— DAC_P output full scale		-2.07	-2.00	-1.93	mA
I _{DAC10_NFS}	DAC_N output full scale			0		mA
I _{DAC10_LSB}	LSB Weight			-1.953		μA
I _{DAC10_IN}	Integral Nonlinearity		-5	0	5	LSB
I _{DAC_DN}	Differential Nonlinearity		-0.5	0	0.5	LSB
V _{DAC10_PN}	Compliance Range		0		3	V
T _{DAC10_SET}	Settling			0.2	1	μs
	Amplifier with gain control	(measured at ADC IN)	1		ı	
	3	Register 7 = b'00101000' (gain = 0.4, 10kHz);				
		referenced to input; -55°C, 25°C	-2	13	25	
		Register 7 = b'00101000' (gain = 0.4, 10kHz);				
İ		referenced to input; 125°C	-2	13	30	
	Calculated by	Register 7 = b'00101001' (gain = 2, 10kHz);	_	_	_	mV
$V_{IA_OFFSET(ceramic)}$	interpolation	referenced to input; -55°C, 25°C	-3	0	3	
		Register 7 = b'00101001' (gain = 2, 10kHz);			4	
		referenced to input ;125°C	-3	0	4	
		Register 7 = b'00101010' (gain = 10, 10kHz);	2	_	2	
		referenced to input; -55°C, 25°C, 125°C	-3	0	3	
		Register 7 = b'00101000' (gain = 0.4, 10kHz);	-2	13	22	
		referenced to input; -55°C, 25°C	-2	13	32	
		Register 7 = b'00101000' (gain = 0.4, 10kHz);	2	12	27	
		referenced to input; 125°C	-2	13	37	
V.,	Calculated by	Register 7 = b'00101001' (gain = 2, 10kHz);	-3.5	0	3.5	mV
V _{IA_OFFSET(plastic)}	interpolation	referenced to input; -55°C, 25°C	-3.5	U	3.5	
		Register 7 = b'00101001' (gain = 2, 10kHz);	-3.5	0	4.5	
		referenced to input ;125°C				
		Register 7 = b'00101010' (gain = 10, 10kHz);	-4	0	4	
		referenced to input; -55°C, 25°C, 125°C				
	Vo2 - Vo1	Register 7 = b'00101000' (gain = 0.4, 10kHz)	0.398	0.400	0.402	Vout
V_{IA_GAIN}	$Gain = \frac{Vo2 - Vo1}{Vi2 - Vi1}$	Register 7 = b'00101001' (gain = 2, 10kHz)	1.992	1.998	2.004	Vin
	V 1 2 V 1 1	Register 7 = b'00101010' (gain = 10, 10kHz)	9.965	9.995	10.025	V 111
T _{IA_RISE}	Output Step Rise Time	Register 7 = b'00101000' (gain = 0.4, 10kHz)	120	210	333	
'IA_RISE	10% to 90%; Vo = 2Vpp	Register 7 = b'00101001' (gain = 2, 10kHz)	31	52	105	μs
		Register 7 = b'00101010' (gain = 10, 10kHz)	31	52	105	
P _{1_IA}	Pole frequency	Register 7 = b'000000xx' (400Hz)	360	600	1000	Hz
P_{2_IA}	Pole frequency	Register 7 = b'000101xx' (2kHz)	1.4	2.8	3.8	kHz
P _{3_IA}	Pole frequency	Register 7 = b'001010xx' (10kHz)	8.8	13.5	18.2	kHz
12-Bit Analog-to-	Digital Converter (input at A	ADC_IN)				
V_{ADC_LR}	Linear Range	Input applied to ADC_IN	0		2.0	V
V _{ADC_FSE}	Full scale error	Best fit curve applied to full range	-2.5	0	2.5	%
V _{ADC_OFFSET}	Offset Error		-10	0	10	mV
_	Internal condition 19	-55°C, 25°C	-6	0	6	
V _{ADC_IN(ceramic)}	Integral nonlinearity	125°C	-7	0	7	LSB
		-55°C, 25°C	-6.5	0	6.5	
$V_{ADC_IN(plastic)}$	Integral nonlinearity	125°C	-7.5	0	7.5	LSB
VADO DU	Differential nonlinearity		-1	0	3	-
V _{ADC_DN}	· ·	Register 7 = b'01000000' (analog front end is				
I _{ADC_LEAK}	Leakage current	disabled); ADC not converting	-0.2	0	0.2	μA
t _{CONV}	Conversion Time	a.c.a,, res not solitoring		13	1	
t _{ACQU}	Acquisition Time	 Cycles of CLK pin, guaranteed by design		25		clocks
				38		CIOONS
t _{SAMP}	Sample Period			30	<u> </u>	

Symbol	Parameter	Test Conditions/Comments	Min	Тур	Max	Units
Fixed Threshold	Bi-Level Inputs					
	Threshold	Internal reference	2.45	2.50	2.55	.,
V _{BLI#_THRES}	(Rising Voltage)	With external 2.50V reference	2.45	2.50	2.55	V
V _{BLI#_HYS}	Hysteresis	Rising threshold = V _{BLI#_THRES} Falling threshold = (V _{BLI#_THRES} - V _{BLI#_HYS})	60	120	180	mV
V _{BLI#_CLP_P}	Voltage Clamp	Clamp Current = 1mA into pin	15	20	23	V
V BLI#_CLP_P	(power applied)	Clamp Current = -1mA out of pin	-23	-20	-15	•
$V_{BLI\#_CLP}$	Voltage Clamp	Clamp Current = 1mA into pin	15	20	23	V
	(power removed)	Clamp Current = -1mA out of pin	-23	-20	-15	_
I _{BLI#_BIAS}	Bias Current	V _{BLI1} = 0V to 5V	-0.2	0	1.5	μA
I _{BLI#_LEAK}	Leakage Current	V _{BLI1} = 0V to 5V; IC powered off	-0.2	0	1.5	μΑ
t _{BLI#}	Propagation Delay	High to low transition	0.3	0.8 2.1	1.3	μs
	DI TU nin Voltage	Low to high transition	0.8	2.1	3.4	
V_{BL_TH}	BL_TH pin Voltage Range		0.1		4.9	V
Logic Levels for I	FPGA or MCU System Conf	troller Interface I/Os	1			
V _{EXT VEE} , V _{EXT VREF}		Threshold Voltage	2.0	2.5	3.0	V
V_{LOG_IN}	Input Logic Threshold	Threshold Voltage	35	50	65	%VDD
V_{LOG_OUT}	Logic Output Levels	High Logic Level (4mA source)	VDD- 0.3		VDD	V
_		Low Logic Level (4mA sink)	0		0.3	
		SPI_A, SPI_B: V _{LOG_IN} = 3.3V	-2	0	2	
		$\overline{SPI_A}$, $\overline{SPI_B}$: $V_{LOG_IN} = 0V$	-10	-4	-1.5	
		CLK, A0/MISO_A, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, PTY I/O as input, V _{LOG IN} = 3.3V	1.5	4	10	_
		CLK, A0/MISO_A, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, PTY I/O as input, V _{LOG_IN} = 0V	-2	0	2	
I _{LOG_IN}	Input currents	CE/SSA, OE/CLKA, WE/MOSI_A, A1/SSB I/O as input, V _{LOG_IN} = 3.3V	-2	0	2	μA
		CE/SSA, OE/CLKA, WE/MOSI_A, A1/SSB I/O as input, V _{LOG_IN} = 0V	-10	-4	-1.5	
		EXT_VREF or EXT_VEE = 5V	-2	0	2	
		EXT_VREF or EXT_VEE = 0V	-12	-6	-1.5	
		RESET with power on enabled: $V_{LOG_IN} = 3.3V$	1.5	4	10	
		RESET with power on enabled: V _{LOG_IN} = 0V	-150	-66	-33	
Operating Curren	nt					
		Register 1 = b'110111111'. All blocks enabled Register 7 = b'00xxxx00'. Gain = 0.4, CH1 = 0V. Internal VEE (EXT_VEE pin tied to +5V)	38	61	78	
lvcc	VCC Operating Current	Register 1 = b'110111111'. All blocks enabled Register 7 = b'00xxxx00'. Gain = 0.4 External VEE = -12V (EXT_VEE pin tied to GND)		54	71	mA
See Section 13.1.	.3 on page 18 for power sav	1	1	1	ı	1
I _{VCC}	VCC Standby Current	Register 1 = b'0xxxxxxx'	2	4	6.75	mA
I _{VEE}	VEE Current	Using external VEE source Positive current out of pin	-2	-4.7	-7.0	mA
I_{VDD}	VDD Current	All digital I/O pins static		0.9		mA
Under Voltage De			•			•
V _{VCC}	VCC UVLO	Voltage rising; 200mV hysteresis	9.5	10	10.5	V
V _{VEE}	VEE UVLO	Voltage falling; 200mV hysteresis	-8.2	-8.0	-7.5	V
V _{+5V}	+5V UVLO	Voltage rising; 200mV hysteresis	3.9	4.15	4.4	V

⁽¹⁾Voltage Clamp (power applied) 1mA into pin will clamp to the VCC supply

10 Thermal Properties

Thermal resistance, θ_{JB} , is provided from die to the back surface of the package. Junction temperature T_J is calculated using $T_J = T_B + (PD \times \theta_{JB})$, where T_B is the temperature maintained on the back surface of the package.

Package	Thermal Resistance	Тур	Units
CQFP-132	θ_{JA}	39.8	°C/W
LQFP-160	OJA	9.9	C/VV
CQFP-132	θ _{JB}	1.93	°C/W
LQFP-160	OJB	1	C/VV

11 Heatsink Recommendations

The base of the plastic package has an exposed pad to be used as the heat conducting surface. The heat dissipater can be copper layers within a multilayer circuit board.

It is strongly recommended to use the base of the ceramic package as the surface for conducting heat from the package. The metal package top is attached to the package body at the top of relatively thin cavity walls, and so has a much higher thermal resistance from the die than the base of the package. The leads can be formed to mount the part upside down if necessary.

It is also recommended to apply a thermal interface material between the base of the package and the heat dissipater. The heat dissipater can be copper layers within a multilayer circuit board to spread heat laterally across the board, or a direct mounted dissipation element.

12 System Outline

The LX7730 circuitry comprises:

- A power supply and voltage reference (Section 13 on page 17)
- A reset circuit (Section 14 on page 21)
- Bi-level discrete monitors (BDM) comprising 16 comparators for monitoring analog inputs (Section 15 on page 22)
 - 8 comparators monitor a combination of the 64 analog inputs, and provide outputs via an internal register
 - 8 comparators monitor 8 dedicated analog input pins, and provide outputs on 8 dedicated digital output pins
- A 12-bit analog signal monitor (ASM) with programmable gain and filtering for a mix of up to 64 single-ended or 32 differential inputs (Section 16 on page 26)
- Two DACs for current-driving sensors and other purposes (Section 17 on page 32)
- Multiple digital interfaces (one parallel, two serial) to the system controller, with registers for configuration, operation, and monitoring (Section 18 on page 33)

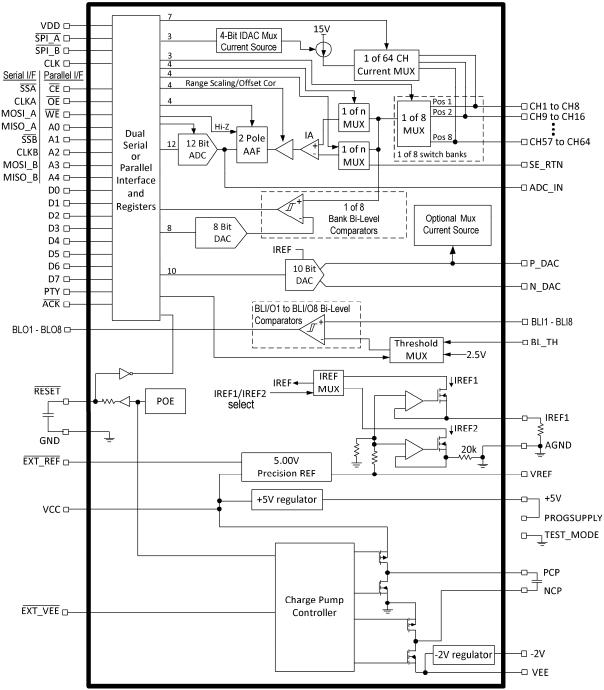


Figure 1. Block Diagram

13 Power Supplies, Bias Resistors, and Voltage Reference

13.1 Power Supply Configurations and Decoupling

The main input supply to the LX7730 is a single +11.4V to 16V supply, VCC, with a typical standby current of 4mA, and a typical operating current dependent on features enabled. A separate supply, VDD, drives the logic I/O and sets the I/O thresholds and voltages. On-chip power management (Figure 2 below) provides the following additional rails from VCC:

- A linear regulator provides a +5V ±0.25V supply from VCC, with the internal circuitry drawing 30mA typical current
- An inverting 200kHz charge pump generates an unregulated negative supply, VEE, from VCC
 - An external -16V to -10V supply at 5mA typical may be used instead
- A linear regulator provides a -2V supply from VEE for internal biasing
- A precision +5V ±1% voltage reference
 - An external voltage reference (typically 5V or 5.12V) may be used instead

Figure 2 below and Table 1 on page 18 outline the power supply connections and provide decoupling capacitor recommendations, presuming low inductance capacitors such as MLCCs are used. Capacitance values can be reduced for supplies with tracking under a few inches to a bulk capacitor. Do not reduce the values for C4 and C5 in Figure 2.

See Table 6 on page 21 for details on the 3 resistors $R_{ADC_BIAS_IN}$, $R_{ADC_DAC_OUT}$, and R_{IREF1} . See section 20.14 on page 55 for details on the 10-bit DAC resistors on the DAC P and DAC N outputs.

The LX7730 won't be damaged by any of the permutations of VDD and/or VCC being down, with or without logic signals being applied up to 7V absolute maximum. However, the LX7730's internal registers and operations are automatically reset by failure of either VCC or VDD, and data read-back (serial or parallel) will return logic low, and writes will be ignored as cold-spare behavior. If the host system detects a VCC and/or VDD failure, then after restoring the rail(s), the LX7730 should be re-configured as it would be for a normal cold start.

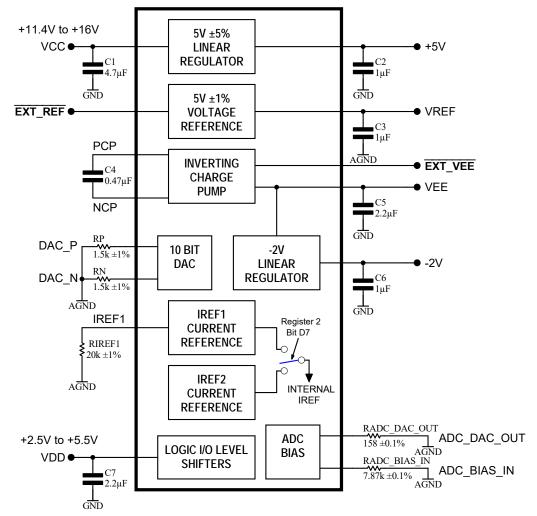


Figure 2. Power Supplies, Bias Resistors, and Voltage Reference

Table 1. Power Supplies Configuration and Decoupling Capacitors

Supply Pin	Voltage Range	Notes	Capacitor	Ground	
VCC	11.4V to 16V	Main LX7730 supply	4.7µF	GND	
+5V	4.5V to 5.5V	Internal +5V linear regulator from VCC used	1µF	GND	
130	5.25V to 6.0V	External +5.5V ±0.25V supply used, auto-disabling the internal regulator	Τμι	GND	
VREF	4.95V to 5.05V Internal +5V ±1% reference voltage used (EXT_REF pin tied to +5V)		1µF	AGND	
VIXLI	0V to 5.5V	External 5V or 5.12V reference voltage used (EXT_REF pin tied to GND)		AOND	
VDD	2.25V to 5.5V	External FPGA or MCU controller's I/O power supply	2.2µF	GND	
VEE	-VCC to -10V	Internal inverting 200kHz charge pump from VCC used (EXT_VEE pin tied to +5V). Flying capacitor between PCP pin 122 and NCP pin 123 is 0.47µF	2.2µF	GND	
-16V to -10V		External VEE supply used (EXT_VEE pin tied to GND)		AGND	
-2V	-2V typical	Internal -2V linear regulator from VEE	1µF	GND	

13.1.1 VCC OPTIONS

The LX7730 is typically operated from a system 12V or 15V nominal supply. A 12V nominal supply is recommended for monitoring and measuring signals on CH1 to CH64 up to ±8V, to minimize power consumption. A 15V nominal supply is recommended for monitoring and measuring signals over the full ±10V range. Note that the input voltage limit for the 8 bilevel comparators BLI1 to BL8 is ±8V maximum, independent of VCC.

If it is necessary to meet ECSS-E-ST-50-14C's fault voltage tolerance (V_{rft}) specification of ±17.5V for the CH1 to CH64 analog inputs when power is applied, then select VCC in the range 15V to 16V. The LX7730's fault voltage tolerance exceeds ±17.5V when powered down. See section 16.6 on page 32 for details of alternative protection approaches.

13.1.2 VEE OPTIONS

The main negative supply, VEE, is generated by an internal 200kHz charge pump by default. This charge pump can be disabled to allow an external -16V to -10V supply to be used instead (Table 2 below).

The VEE charge pump output has a typically 100mV peak-to-peak noise ($C_{PCP-NCP} = 0.47\mu F$, $C_{VEE} = 2\mu F$). The noise envelope is a sawtooth waveform at the 200kHz charge pump frequency. The noise is out of band with respect to the ADC acquisition rate. The data sheet guaranteed parameters are with the VEE charge pump being used, so using a clean external VEE supply will not degrade performance.

Table 2. VEE Supply Methods

2017.3				
VEE Supply Method	EXT_VEE pin	GND pin	Capacitor Between PCP pin and NCP pin (C4 in Figure 2)	Capacitor on VEE pin (C5 in Figure 2)
VEE internally generated by inverting charge pump from VCC	+5V	GND	0.47µF	2.2µF to GND
VEE externally supplied (-16V to -10V) directly to VEE pin	GND or AGND	GND or AGND	Not fitted. Leave PCP and NCP pins open	2.2µF to AGND

13.1.3 VREF OPTIONS

The LX7730 contains an internal +5V \pm 1% reference voltage. To use it, connect a 1µF capacitor from VREF to AGND pin 33 and tie the $\overline{\text{EXT}_{REF}}$ pin to +5V. The VREF pin can source up to 10mA into external loads, such as bias networks. The general variation with temperature and external load of the internal reference voltage is shown in the Characteristic Curves starting on page 62. Note that the reference voltage exhibits around 5mV drop with loading to 10mA (0.5 Ω output impedance), representing 4 LSBs of a 12 bit acquisition. It is therefore recommended to keep external VREF loads static to avoid adding noise to consecutive ADC measurements.

To use an external reference voltage up to 5.5V, connect the external reference to VREF, and tie $\overline{\text{EXT}_{REF}}$ to either GND or AGND. The LX7730's VREF input goes low impedance (around 100Ω) when the VCC supply is down. This means that directly connecting an external reference voltage to multiple cold swapped LX7730s will cause a powered-off LX7730 to overload the external reference. However, unused LX7730s could be kept powered up (both VCC and VDD), and put into standby mode through the bus. LX7730s draw typically 4mA from VCC and 0.9mA from VDD in standby. It is necessary to keep the VDD supply powered during standby because the LX7730's internal under-voltage detector on VDD resets the part when the VDD logic supply goes down, and the startup condition is active mode.

13.1.4 POWER SAVING OPTIONS

The internal 5V linear regulator accounts for about 30mA of the current draw from the VCC pin. The regulator itself contributes 210mW to 300mW to the dissipation from a 12V to 15V VCC supply by dropping 7V to 10V. This consumption can be removed by driving the 5V pin 11 with an external $5.5V \pm 0.25V$ supply, for example by a local buck regulator from the 12V to 15V VCC supply. The external supply is toleranced as $5.5V \pm 0.25V$ to as to be above the internal 5V linear regulator's 5.25V upper specification, and still below the 6V maximum pin rating. Maintaining a higher voltage disables the internal 5V linear regulator, which remains available as seamless backup should the external 5.5V supply suffer short term brownouts or even fail. If the external 5.5V supply is not derived from VCC, ensure that the 5.5V supply is never more than a Schottky diode drop higher than VCC.

Table 3 shows the trade-offs between VCC supply current, ADC INL, and ADC sample rate by adjusting the bias resistor on the ADC_BIAS_IN pin, the frequency of the ADC clock on CLK pin, and the ADC input voltage range used. Note that while the values given are worst case data taken from characterization, they are not production tested and therefore are not guaranteed.

Table 4 on page 20 shows the typical VCC supply current savings when various internal circuit blocks are disabled, and summarizes the functions affected and not affected.

Table 5 on page 20 provides typical current consumption for various power supply choices with ADC operating at 12.5ksps as follows:

- ADC input of 200mV at ADC IN. Register 1 = 0xA1 (ADC on, analog front end off). Register 7 = 0x40
- ADC input of 200mV at CH1. Register 1 = 0xDF (ADC and complete analog front end on). Register 7 = 0x00 or 0x02

Some internal stages in the instrumentation amplifier, filter, and ADC use resistive loadings, so current consumption rises with signal amplitude at ADC_IN. The different signal amplitudes in Table 5 for gains of 0.4 and 10 highlights this effect.

The LX7730 settings used for the measurements in Table 5 are:

- VDD = 5V
- CLK = 500kHz, R_{IREF1} = 20k Ω , $R_{ADC\ BIAS\ IN}$ = 7.87k Ω , and $R_{ADC_DAC_OUT}$ = 158 Ω
- Current Mux register 5 = 0x80, 10-bit DAC register 14 and 15 = 0x00 and 0x00 to disable both current DACs
- Current Source. Bank-Bi-Level. 10-Bit DAC. and BLI/BLO Bi-Level disabled in register 1
- Signal Conditioning Amplifier register 7 = 0x00 for gain = 0.4, 0x02 for gain = 10
- ADC Control register = 0x10 to configure the ADC to be auto-sampling at its fastest rate

Table 3. Operating Current Reduction by ADC Bias Reduction

R _{ADC_BIAS_IN}	R _{ADC_DAC_OUT}	CLK	Max Sample Rate	Input range V _{ADC_IN}	INL Max	I _{VCC}	
				0V to 2V	±7 LSB	Factory tested specification	
		500kHz	13ksps	0.2V to 1.8V	±4.5 LSB		
7.87kΩ ±0.1%	158Ω ±0.1%			0.4V to 1.6V	±3.25 LSB		
7.07 K22 ±0.170	13052 10.170			0V to 2V	±8 LSB	No change in operating current	
		250kHz	6.5ksps	0.2V to 1.8V	±4.5 LSB		
				0.4V to 1.6V	±3.25 LSB		
				0V to 2V	±8 LSB	7.1mA to 8.3mA reduction in	
$15k\Omega \pm 0.1\%$	301Ω ±0.1%	±0.1% 250kHz	Hz 6.5ksps	0.2V to 1.8V	±4.5 LSB	operating current	
				0.4V to 1.6V	±3 LSB	operating ourient	
				0V to 2V	±8.5 LSB		
		250kHz	6.5ksps	0.2V to 1.8V	±5.75 LSB		
30kΩ ±0.1%	604Ω ±0.1%			0.4V to 1.6V	±4 LSB	11.3mA to 12.2mA reduction in	
JUN22 ±0.1 /0	00452 IU. 170			0V to 2V	±8.75 LSB	operating current	
			125kHz	3.25ksps	0.2V to 1.8V	±4.5 LSB	
				0.4V to 1.6V	±3.25 LSB		

Table 4. Typical Analog Block Operating Currents and Wakeup Times

LX7730 Internal Block	Functions Available with Block Disabled	Enable/Disable Register	Typical Block Current (VCC = 15V)	Typical Wakeup Time (VCC = 15V)
CH1-CH64 Multiplexer & Instrumentation Amplifier with gain of 10	BLI1-8 bi-level comparators. ADC can acquire an external 2V full-scale signal on	Function Enable register 1 bits D3	11 mA	4 µs
CH1-CH64 Multiplexer & Instrumentation Amplifier with gain of 2 or 0.4	ADC_IN	& D6 (Table 17)	(ADC_IN = 0V)	464 µs
Multiplexer Current Source @ 2mA	All ADC acquisition system including multiplexer bi-level comparators, but excluding both current source types	Function Enable register 1 bit D5 (Table 17)	2 mA	1.4 µs
Bank Bi-Level Comparators	BLI1-8 bi-level comparators. ADC acquisition system except multiplexer bi-level comparators	BLI1-8 bi-level comparators. ADC acquisition system except multiplexer bi-level Function Enable register 1 bit D4		-
Instrumentation Amplifier	BLI1-8 bi-level comparators. Multiplexer bi-level comparators. ADC can acquire a 2V full-scale signal on ADC_IN	Function Enable register 1 bit D3 (Table 17)	1 mA (ADC_IN = 0V)	40 µs
10-Bit DAC Current Source	All ADC acquisition system including multiplexer bi-level comparators. Alternate current source available via Current Mux Level register 5 (Table 25 on page 47)	Function Enable register 1 bit D2 (Table 17)	2 mA	44 µs
BLI1-8 Bi-Level Comparators	All ADC acquisition system including multiplexer bi-level comparators	Function Enable register 1 bit D1 (Table 17)	1 mA	1.8 µs
ADC	Acquisition system analog front end including multiplexer bi-level comparators. Output of analog front end is available at ADC_IN for acquisition by external ADC	Function Enable register 1 bit D0 (Table 17)	16 mA	7.2 µs

Table 5. Consumption for Various Power Supply Choices and ADC Operating Modes

VCC	VEE	+5V	lvcc	I _{VEE}	I _{+5.5V}	ADC Mode
			29 mA			ADC_IN used (note 1)
12.0V			58 mA			CH1 used with gain = 0.4 ^(note 2)
	Internal charge pump		69 mA	_		CH1 used with gain = 10 ^(note 3)
			30 mA	_	_	ADC_IN used (note 1)
15.0V		Internal 5V	61 mA			CH1 used with gain = 0.4 ^(note 2)
		linear regulator	72 mA			CH1 used with gain = 10 ^(note 3)
		operating 26 mA 2.1 mA			ADC_IN used (note 1)	
12.0V		from VCC	52 mA	4.7 mA	_	CH1 used with gain = 0.4 ^(note 2)
	External -12.0V		63 mA	5.0 mA		CH1 used with gain = 10 ^(note 3)
	LAterrial - 12.0V		26 mA	2.2 mA		ADC_IN used (note 1)
15.0V			54 mA	4.9 mA		CH1 used with gain = 0.4 ^(note 2)
			64 mA	5.1 mA		CH1 used with gain = 10 ^(note 3)
	Internal charge		6 mA		25 mA	ADC_IN used (note 1)
	Internal charge pump		29 mA	-	24 mA	CH1 used with gain = 0.4 ^(note 2)
12.0V	pamp	External 5.5V	30 mA		40 mA	CH1 used with gain = 10 ^(note 3)
12.00		External 3.3V	3 mA	2.2 mA	23 mA	ADC_IN used (note 1)
	External -12.0V		24 mA	4.9 mA	29 mA	CH1 used with gain = 0.4 ^(note 2)
			24 mA	5.2 mA	39 mA	CH1 used with gain = 10 ^(note 3)

^{(1) 200}mV signal at ADC_IN (2) 80mV signal at ADC_IN (3) 2V signal at ADC_IN

13.2 Bias Resistors

Table 6 below lists the 3 bias resistors required for standard ADC operation (CLK = 500kHz). See Table 3 on page 19 for other options for ADC_BIAS_IN and ADC_DAC_OUT values. Minimize the track length from each resistor to its pin, and route a direct track from the other end of each resistor to the nearest AGND pin. Page 2 shows an example layout.

Table 6. Bias Resistors

Resistor Function	Resistance to AGND	Voltage Across Resistor	Resistor Dissipation
IREF1	20kΩ ±1%	VREF/3.125 static (1.6V with VREF=5V)	0.13mW
ADC_BIAS_IN	7.87kΩ ±0.1%	VREF/3.125 static (1.6V with VREF=5V)	0.33mW
ADC_DAC_OUT	158Ω ±0.1%	From VREF/5 to 2xVREF/5 (1V to 2V with VREF=5V) during an ADC conversion, otherwise 0V	25mW peak

14 RESET Pin and Power-On Reset

14.1 Reset Circuit

The LX7730's internal reset circuit (Figure 3 below) uses a Power On Enable block to monitor the level of the +5V supply. The POE signal is low initially, pulling the $\overline{\text{RESET}}$ pin low through a $50\text{k}\Omega$ resistor. The logic level at the $\overline{\text{RESET}}$ pin is inverted to provide an internal RESET signal, which resets internal registers and user interfaces. The POE signal goes high once the +5V supply has stabilized, pulling the $\overline{\text{RESET}}$ pin high through the $50\text{k}\Omega$ resistor, releasing the reset condition. The LX7730 can also be reset using the Reset register 0 (Table 16 on page 38). Note that most system blocks are enabled on reset. Unwanted blocks may be disabled via the Function Enable register 1 (Table 17 on page 39).

An optional external capacitor from the $\overline{\text{RESET}}$ pin to GND provides further noise immunity. 1nF is recommended to provide a nominal 35 μ s delay.

DELAY = $35 \times C_{RESET}$ µs where C_{RESET} is in nF

Equation 1. RESET Pin Capacitor Delay

Once the LX7730 is out of reset and operating normally, the $\overline{\text{RESET}}$ pin remains pulled high internally through the $50\text{k}\Omega$ resistor. This may be over-ridden by an external active low $\overline{\text{RESET}}$ pulse from a system controller, for example. An opendrain/collector output, a tri-stateable output, or a push-pull output through a series diode (anode to $\overline{\text{RESET}}$ pin) may be used. If a push-pull logic signal is used to drive the $\overline{\text{RESET}}$ pin directly, then this also over-rides the LX7730's Power On Enable signal. In this case the $\overline{\text{RESET}}$ pin must be pulsed low after power-up to ensure that the LX7730's logic is reset.

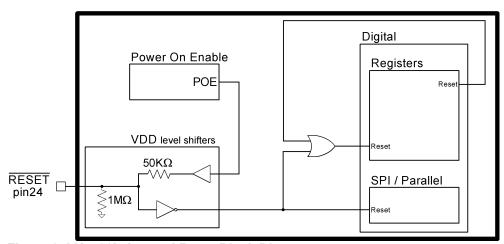


Figure 3. LX7730's Internal Reset Block Diagram

The LX7730 can also be put into the reset state by writing 0x6A to the Reset register 0 (Table 16 on page 38). Toggling the RESET pin low then high clears the Reset register 0 to 0x00 as part of the reset process.

15 Bi-level Discrete Monitors (BDM)

15.1 BDM Summary

There is a total of 16 voltage comparators available to detect changes on single ended signals:

- The 8 BLI/BLO bi-level comparators use dedicated input pins BLI1 to BLI8 and output pins BLO1 to BLO8
- The 8 bank bi-level comparators' inputs connect to a configurable combination of the 64 analog inputs CH1 to CH64 (see block diagram Figure 6 on page 24, and section 16 on page 26). The bank comparator outputs appear in the Bank Bi-Level Comparators Output Status register 13 (Table 33 on page 55).

Both sets of comparators are enabled by default on POR and after a reset. The BLI/BLO bi-level comparators may be disabled (to save power) by clearing Function Enable register 1 bit D1 = 0 (Table 17 on page 39). The bank bi-level comparators may be disabled by clearing bit D4 = 0 in the same register. Table 4 on page 20 shows typical analog block operating currents and wakeup times.

15.2 BLI/BLO Fixed Threshold Bi-Level Comparators

The 8 BLI/BLO bi-level comparator non-inverting inputs share a common trip threshold (Figure 5 on page 23). By default on POR or after a reset, the rising voltage threshold is 2.5V ±50mV, and the hysteresis is 120mV ±60mV on falling edges. Alternatively, an external trip threshold in the range 0.1V to 4.9V may be applied to the BL_TH pin, and this voltage is selected by setting B7 in the Bank Bi-Level register 12 (Table 32 on page 54).

The 4 BLO outputs BLO5 to BLO8 have an alternate system monitoring function when the LX7730 is in reset state (Table 7 below). The LX7730 is in reset state when either RESET pin 24 held active low (section 14 on page 21), or Reset register 0 (Table 16 on page 38) contains 0x6A.

Table 7. BLO1 to BLO8 Output System Monitoring Functions In Reset State

Output	Function when the LX7730 is in reset state
BLO1 - BLO4	Outputs of fixed threshold bi-level comparator inputs BL1, BL2, BL3 and BL4, using the default 2.5V threshold
BLO5	VCC UVLO status, Power Status Register 2 bit D2 (Table 18 on page 38)
BLO6	VEE UVLO status, Power Status Register 2 bit D1 (Table 18 on page 38)
BLO7	+5V UVLO status, Power Status Register 2 bit D0 (Table 18 on page 38)
BLO8	Power On Enable status, which is high when the internal logic is ready after power-up

The input voltage limit for the 8 bi-level comparators BLI1 to BL8 is +8V maximum, +10V absolute maximum, independent of VCC. To protect these inputs beyond +8V, an external clamp circuit can be used (Figure 4 below). Over-voltage capability is limited by component power ratings. At ±17.5V, R1 dissipates 24mW/61mW, the Zener 15mW/2mW.

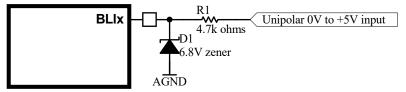


Figure 4. Bank Bi-Level Comparator Input Over-Voltage Clamp

The input protection clamps at each BLI input operate between the input and GND. The small (<1.5µA) leakage current drawn by a clamp provides a weak pulldown to each input, so an open BLI input will produce a corresponding low BLO output, presuming no noise coupling or other EMI effects at the input.

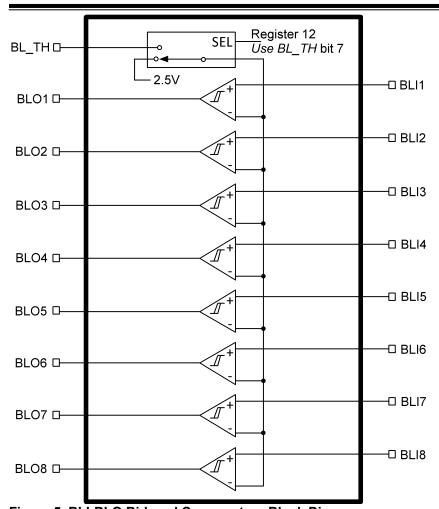


Figure 5. BLI-BLO Bi-Level Comparators Block Diagram

15.3 Bank Bi-Level Comparators

The 8 bank bi-level comparator non-inverting inputs share a common trip threshold set in the range 0 to 5V. This is set by an 8-bit DAC controlled by the 8-Bit Bank Bi-Level Comparators Threshold DAC register (Table 30 on page 52). The bank bi-level comparator outputs are available in the Bank Bi-Level Comparators Output Status register 13 (Table 33 on page 55). The bank bi-level comparators are sampled during the clock cycle that register 13 is read.

The bank bi-level comparator non-inverting inputs connect to 8 of the 64 analog inputs CH1 to CH64, which are also the inputs to the analog signal monitor (section 16 on page 26). The multiplexers for CH1 to CH64 are controlled by either the bank bi-level comparator circuitry or by the analog signal monitor. Either way, the bank bi-level comparators always receive 8 different inputs from CH1 to CH64.

15.3.1 Bank Bi-Level Comparators Control the Bank Input Multiplexers

The Bank Bi-Level Comparators Input Selection register 12 (Table 32 on page 54) selects which bank of 8 inputs are routed to the non-inverting inputs of the bank bi-level comparators, when register 12's En Sw bit D3 = 1. The register selects one of eight groups of consecutive inputs to be routed to the comparators. The groups are CH1 to CH8, CH9 - CH16, CH17 - CH24, CH25 - CH32, CH33 - CH40, CH41 - CH48, CH49 - CH56, and CH57 - CH64.

Figure 6 on page 24 shows a block diagram of bank bi-level comparators operating with register 12's En Sw bit D3 = 1. Here, the 8 bank multiplexers are controlled by a common 3-bit selection input.

The analog signal monitor can acquire single ended or differential signals from any combination of the eight inputs preselected by the setting in register 12.

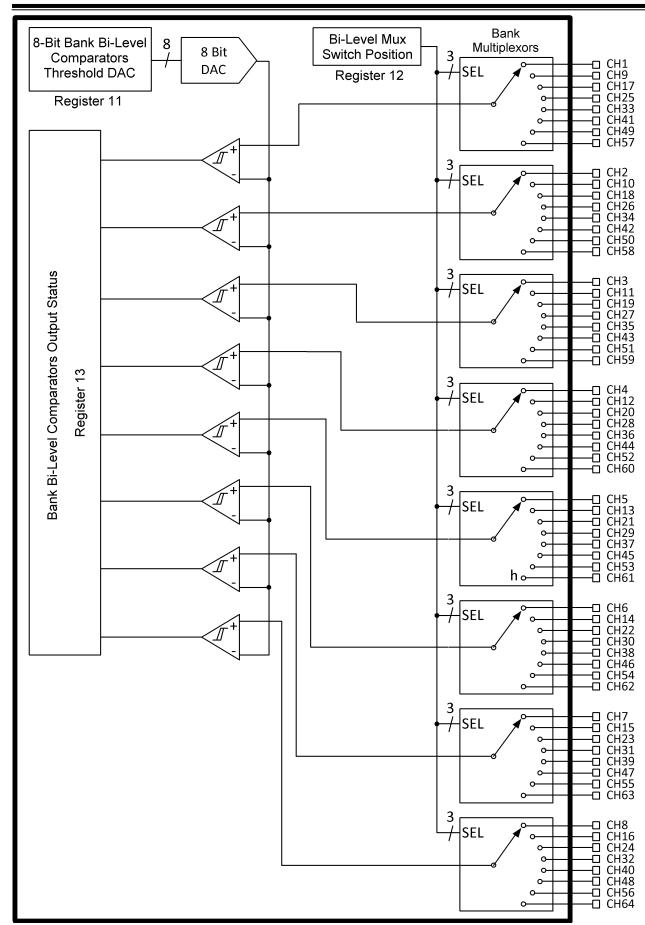


Figure 6. Bank Bi-Level Comparators Block Diagram

15.3.2 Analog Signal Monitor (ASM) Controls the Bank Input Multiplexers

When Bank Bi-Level Comparators Input Selection register 12's En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs selected by Mux Channel Select registers 3 and 4 (Table 19 on page 41, Table 22 on page 44). In this mode, the 8 bank multiplexers are controlled individually, not by a common 3-bit selection input as in the case for Figure 6. Since the output of each of the 8 bank multiplexers routes to a bank bi-level comparator input, it is necessary to follow the ASM multiplexer input selection logic to determine the bank bi-level comparator inputs.

The Non-Inverting Mux Channel Select register 3 (Table 19 on page 41) selects which of the inputs CH1 to CH64 is routed by the analog multiplexer to the non-inverting input of the instrumentation amplifier. This selected input also routes to one of the bank bi-level comparators. The 3 bits [BD2:BD0] in register 3 select a multiplexer bank, and therefore selects which bank bi-level comparator the input is routed to also. Table 8 below identifies the bank bi-level comparator defined by Table 19.

Table 8: Bank Allocated by Register 3 for the Instrumentation Amplifier's Non-Inverting Input

Register Description		Register Data								
		D7	D6	D5	D4	D3	D2	D1	D0	
Non-Inverting Mux Channel Select register		-	-	BD2	BD1	BD0	PD2	PD1	PD0	
Bank 1 selected. Register 3 selects input for bank comparator 1				0	0	0	Х	Х	Х	
Bank 2 selected. Register 3 selects input for bank comparator 2				0	0	1	Х	Х	Х	
Bank 3 selected. Register 3 selects input for bank comparator 3				0	1	0	Х	Х	Х	
Bank 4 selected. Register 3 selects input for bank comparator 4	3	x	х	0	1	1	Х	Х	Х	
Bank 5 selected. Register 3 selects input for bank comparator 5	0x03		^	1	0	0	Х	Х	Х	
Bank 6 selected. Register 3 selects input for bank comparator 6				1	0	1	Х	Х	Х	
Bank 7 selected. Register 3 selects input for bank comparator 7				1	1	0	Х	Х	Х	
Bank 8 selected. Register 3 selects input for bank comparator 8				1	1	1	Х	Х	Х	

The Inverting Mux Channel Select register 4 (Table 22 on page 44) selects which of the inputs CH1 to CH64 is routed by the analog multiplexer to the inverting input of the instrumentation amplifier. The 3 bits [BD2:BD0] in register 4 select a multiplexer bank, and therefore selects which comparator. As before, Table 9 below identifies the bank bi-level comparator defined by Table 22.

Table 9: Bank Allocated by Register 4 for the Instrumentation Amplifier's Inverting Input

Register Description		Register Data								
		D7	D6	D5	D4	D3	D2	D1	D0	
Inverting Mux Channel Select register		-	Use SE_RTN	BD2	BD1	BD0	PD2	PD1	PD0	
Bank 1 selected. Register 4 selects input for bank comparator 1				0	0	0	Х	Х	Х	
Bank 2 selected. Register 4 selects input for bank comparator 2				0	0	1	Х	Х	Х	
Bank 3 selected. Register 4 selects input for bank comparator 3				0	1	0	Х	Х	Х	
Bank 4 selected. Register 4 selects input for bank comparator 4	4	x	x	0	1	1	Х	Х	Х	
Bank 5 selected. Register 4 selects input for bank comparator 5	0x04	^		1	0	0	Х	Х	Х	
Bank 6 selected. Register 4 selects input for bank comparator 6				1	0	1	Х	Х	Х	
Bank 7 selected. Register 4 selects input for bank comparator 7]			1	1	0	Х	Х	Х
Bank 8 selected. Register 4 selects input for bank comparator 8				1	1	1	Х	Х	Х	

The remaining 6 or 7 bank bi-level comparators not assigned to a bank by register 3 and register 4 are routed to the inputs shown in Table 10 below. There will be 7 unassigned comparators if register 3 and register 4 select the same bank.

Table 10: Bank Bi-Level Comparator Inputs for Banks Not Assigned by Register 3 and Register 4

Unassigned Bank	Multiplexer Channel Routed to Bank Bi-Level Comparator
Bank 1	CH1
Bank 2	CH2
Bank 3	CH3
Bank 4	CH4
Bank 5	CH5
Bank 6	CH6
Bank 7	CH7
Bank 8	CH8

When the analog signal monitor is configured to acquire a single ended signal, then the inverting input of the instrumentation amplifier is normally either connected to GND or to the SE_RTN pin. In this case, register 4 isn't needed to select an input channel, and can used simply to select an input to one of the bank bi-level comparators.

16 12-bit Analog Signal Monitor (ASM)

The analog signal acquisition system comprises the following blocks (Figure 7 below):

- A 64-input multiplexer organized as 8 banks of 8-input multiplexers. A combination of up to 64 single-ended or 32 differential inputs from 64 package pins CH1 to CH64 are selectable
 - Differential signals in the range -5V to +5V are constrained that non-inverting and inverting input pairs must be connected to different banks. See section 16.1.1 on page 28 for details and a routing example
 - Positive-going single-ended signals in the range 0 to +5V can be used on any of the 64 inputs, and referred to either the internal GND or the SE_RTN pin. See section 16.1.2 on page 29 for details and a routing example
 - Negative-going single-ended signals in the range -5V to 0V are treated as differential signals, with the signal
 connected to the inverting input pin and the non-inverting input pin connected to the signal ground (AGND). See
 section 16.1.3 on page 30 for details and a routing example
- The 8 multiplexer bank outputs are also routed to the non-inverting inputs of the 8 bank voltage comparators, as discussed in section 15.3 on page 23
- One of two internal programmable current sources may be enabled and routed to any selected input to drive passive sensors, as discussed in section 17 on page 32
- An instrumentation amplifier with a choice of three fixed gain settings (x0.4, x2, or x10) to prescale single ended and differential input signals with ranges of 5V, 1V, or 200mV
- A 2-pole anti alias filter with a choice of three fixed pole settings (10kHz, 2kHz, or 400Hz) or bypass
- a 12-bit ADC with a 0V to 2V input range, with the input accessible directly at the ADC_IN pin
 - The ADC input can be acquired by an external ADC for redundancy by monitoring ADC IN
 - The ADC input can be driven directly via an external signal path when the anti-alias filter is put into Hi-Z using the Filter Off bit D6 in the Signal Conditioning Amplifier register 7 (Table 27 on page 49)

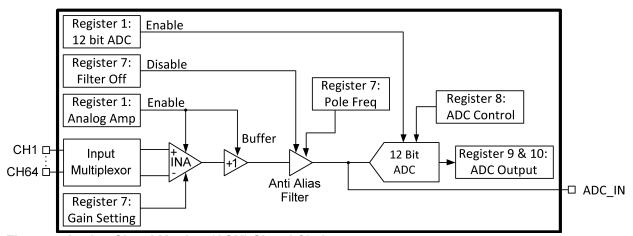


Figure 7. Analog Signal Monitor (ASM) Signal Chain

Various blocks in the analog signal acquisition system can be disabled to save power if they are not used through the Function Enable register (Table 17 on page 39). This is discussed in section 13.1.4 on page 19. Table 4 on page 20 shows typical analog block operating currents and wakeup times.

16.1 Configuring the Instrumentation Amplifier's Input Multiplexers

The input multiplexer selects an input for the instrumentation amplifier's non-inverting and inverting inputs. The ADC processes a unipolar voltage with a fixed range 0 to 2V, so the voltage at the instrumentation amplifier's non-inverting input is expected to be more positive than or equal to the voltage at the inverting input.

Figure 8 below shows the structure of the instrumentation amplifier multiplexers. The input channels CH1 to CH64 connect to 8 bank multiplexers. The eight bank multiplexer outputs route to a further multiplexer each for the non-inverting and inverting inputs.

The 8 bank multiplexers for CH1 to CH64 are controlled by either the analog signal monitor or by the bank bi-level comparator circuitry according to the setting of the En Sw bit D3 in the Bank Bi-Level register 12 (Table 32 on page 54). When Bank Bi-Level Comparators Input Selection register 12's En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs selected by Mux Channel Select registers 3 and 4 (Table 19 on page 41, Table 22 on page 44). See section 15.3.1 on page 23 for details of inputs selected when the bank bi-level comparators manage the bank multiplexers.

16.1.1 MULTIPLEXOR CONFIGURATION FOR DIFFERENTIAL SIGNALS

To acquire a differential signal in the range -5V to +5V, use the Mux Channel Select registers 3 and 4 (Table 19 on page 41, Table 22 on page 44) to select the non-inverting and inverting inputs respectively. Figure 9 below shows an example of the signal routings for a differential signal. Note that SE_RTN can be selected for a differential inverting input, freeing up a CH input for use an extra positive-going single-ended signal input.

The instrumentation amplifier expects the voltage at the non-inverting input to be more positive than the voltage at the inverting input, to provide a positive-going, unipolar voltage at its output in the range 0V to 2V for the ADC input. If the differential input signal polarity is reversed, the output of the instrumentation amplifier will clamp at 0V. The ADC result will be at or around 0x000 (depending on signal amplitude and offset errors). If the polarity of a differential signal to be acquired is unknown, measure it twice and swap the inputs between conversions. The correct result is the highest value.

If the multiplexers are configured such that both inverting and non-inverting inputs to the instrumentation amplifier are set to channels on the same bank, then any resulting ADC conversion will read 0x000.

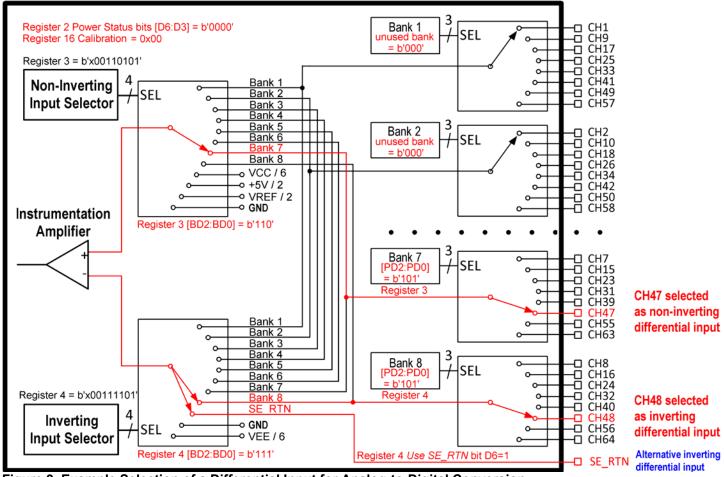


Figure 9. Example Selection of a Differential Input for Analog-to-Digital Conversion

16.1.2 MULTIPLEXOR CONFIGURATION FOR SINGLE-ENDED SIGNALS (POSITIVE-GOING)

To acquire a positive-going single-ended signal in the range 0V to 5V, configure the Non-Inverting Mux Channel Select register 3 (Table 19 on page 41) to select the non-inverting input. The inverting input can be connected to either internal AGND, or to an external GND via the SE_RTN pin. The selection of SE_RTN is made by the Inverting Mux Channel Select register (Table 22 on page 44). The selection of internal GND is made by the I GND bit D1 in the Calibration register (Table 36 on page 58). Figure 10 below shows an example of the signal routings for a positive-going single-ended signal.

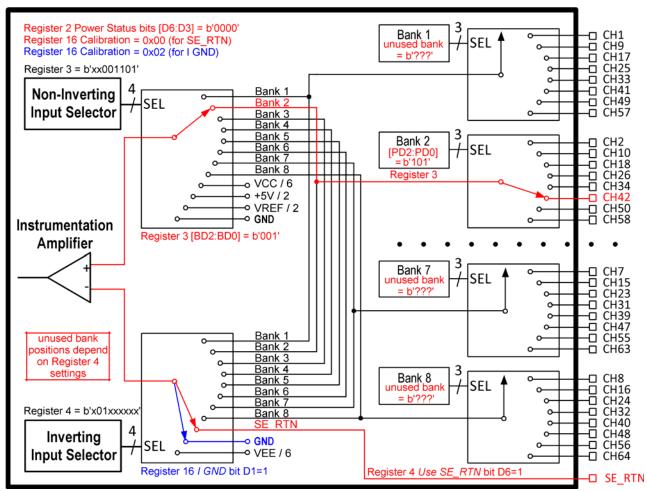


Figure 10. Example Selection of a Positive-Going Single-Ended Input for Analog-to-Digital Conversion

16.1.3 Multiplexor configuration for single-ended signals (negative-going)

Negative-going single-ended signals in the range -5V to 0V are treated as differential signals, with the non-inverting input externally connected to 0V, and the inverting input connected to the signal. The external GND connection is necessary because the non-inverting input cannot be connected to AGND internally or to the SE RTN pin, unlike the inverting input.

Use the Mux Channel Select registers 3 and 4 (Table 19 on page 41, Table 22 on page 44) to select the non-inverting and inverting inputs respectively. Figure 11 below shows an example of the signal routings for one or more negative-going single-ended signals. In this example, CH1 is selected as the GND input, and is wired to AGND on the PCB. With the choice of CH1 made, any of the channel inputs in Bank 2 to Bank 8 may be selected for acquisition of negative-going single-ended signals. The remaining 7 inputs in Bank 1 are available for positive-going single-ended signals or differential signals as discussed in sections 16.1.2 and 16.1.1 respectively.

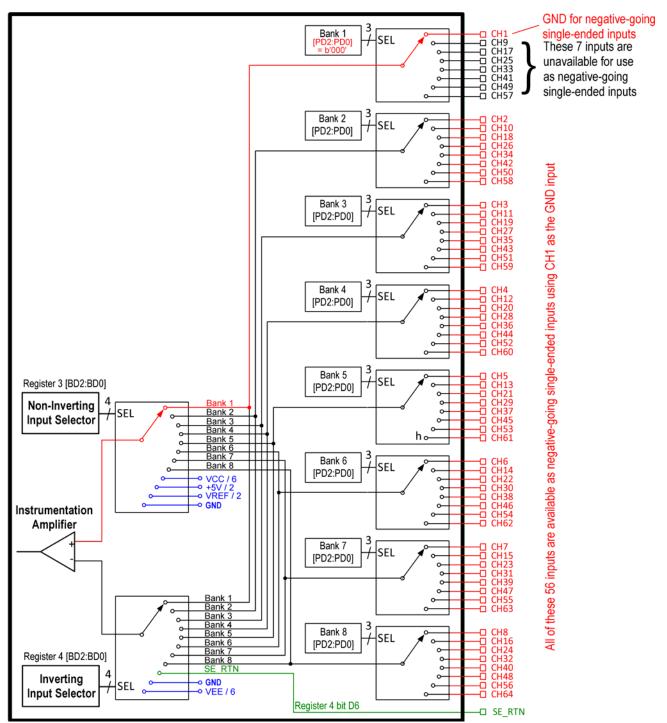


Figure 11. Example Selection of Negative-Going Single-Ended Inputs for Analog-to-Digital Conversion

16.2 Using Differential Inputs to Utilize the ADC's Input Range Fully

Differential inputs can be used with single-ended signals to remove a known offset in the signal range to avoid wasting ADC resolution. For example, consider a two-terminal integrated circuit temperature transducer which operates as a current source providing $300\mu A$ at $25^{\circ}C$, and having a temperature sensitivity of $1\mu A/K$. The transducer output therefore ranges from $220\mu A$ at $-55^{\circ}C$ to $425\mu A$ at $150^{\circ}C$. This is a $205\mu A$ useful working range on top of a $220\mu A$ offset.

The left schematic in Figure 12 shows the temperature transducer connected to a single LX7730 input, the input being single-ended with respect to AGND. The $23.4k\Omega$ sensor load resistor develops a 220μ A x $2.34k\Omega$ = 515mV minimum at -55° C, and a 425μ A x 4700 = 995mV maximum at 150° C. The working range is 480mV on top of a 515mV offset. If the LX7730's amplifier gain is configured to 2 (Table 27 on page 49), the ADC's full scale is 1V, but the upper half of the ADC's input range is used, wasting 1 bit of ADC resolution.

The full ADC resolution can be restored at the cost of a second input channel, as shown in the right schematic. Here, the $4.7k\Omega$ sensor load resistor develops a 220μ A x $4.7k\Omega$ = 1.03V minimum at -55° C, and a 425μ A x $4.7k\Omega$ = 2.0V maximum at 150° C. The working range is now 0.97V on top of a 1.03V offset. The transducer input channel, CH+, is selected to be the non-inverting differential input to the LX7730's instrumentation amplifier (Table 19 on page 41). The other input channel, CH-, is biased to 1V using the potential divider R2 and R3 from VREF. CH- is selected as the LX7730's inverting differential input (Table 22 on page 44). The sensor signal range becomes 0.03V to 1V after differential to single-ended conversion by the differential amplifier, so now using the full 1V ADC input range.

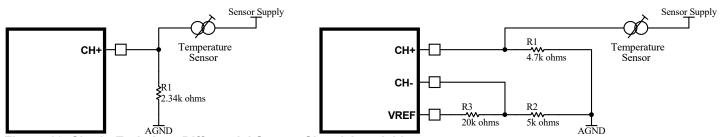


Figure 12. Single-Ended vs. Differential Sensor Signal Acquisition

16.3 Resistance Temperature Detector (RTD) Interface Options

Resistance type sensors, such as temperature detectors, can be operated using a single input channel, as shown in the left schematic in Figure 13. The channel is configured as both the non-inverting input to the LX7730's instrumentation amplifier (Table 19 on page 41) and the current mux channel (Table 26 on page 48). The current level itself is configured to suit the sensor (Table 25 on page 47). This approach suits sensor locations close to the LX7730, where the absolute resistance and the temperature coefficient of the tracking or wiring to the sensor contributes an acceptable error in the measurements.

Sensor measurement accuracy can be restored at the cost of a second input channel, as shown in the right schematic, using a 3-wire force/sense approach. Here, the black wire from channel CHA+ to the sensor, and the black wire returning from the sensor to AGND, are chosen to be electrically identical. The means that the voltage drop across the force wire to the sensor matches the voltage drop across the return wire. The second channel CHB+ is Kelvin-connected as close to the sensor as possible as shown with the red sense wire. Since the only current flowing through the red wire is the negligible CHB+ channel input current, an ADC acquisition of the voltage at CHB+, V_{CB+} , measures the sensor voltage plus the single drop across the black return wire. An additional ADC acquisition of CHA+, V_{CA+} , measures the sensor voltage, plus the dual drops across the black force and return wires. The compensated voltage across the sensor can be calculated as $(2 \times V_{CB+}) - V_{CA+}$.

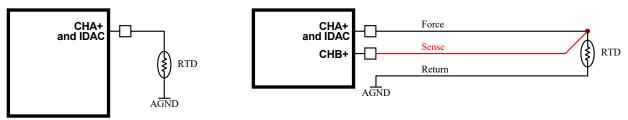


Figure 13. 2-Wire and 3-Wire RTD Signal Acquisition

16.4 Configuring the Instrumentation Amplifier and Anti Alias Filters

The instrumentation amplifier and anti alias filters are controlled by the Signal Conditioning Amplifier register 7 (Table 27 on page 49). The amplifier has a typical rise time (2V step, 10% to 90%) of 52µs with a gain of 10 or 2, and 210µs with a gain of 0.4. Allow settling time when switching between signals for acquisition.

16.5 Configuring the 12 Bit ADC

The ADC is a 12-bit SAR taking its acquisition timing from a 125kHz to 500kHz (typically 500kHz) clock at the CLK pin. See Table 3 on page 19 for details how operating current and INL can be reduced by adjusting the ADC's bias, input voltage range, and CLK frequency. The ADC is controlled by the ADC Control register 8 (Table 28 on page 50). See section 20.9 on page 49 for details of ADC internal timing and operation, plus configuration and control details.

16.6 CH1 to CH64 Input Over-Voltage Protection

The LX7730 is designed for cold redundancy, and the ADC inputs CH1 to CH64 can take $\pm 20V$ with the LX7730 powered off (VCC=0V). This passes the ECSS-E-ST-50-14C's fault voltage tolerance ($V_{\rm rft}$) specification of $\pm 17.5V$.

With the LX7730 powered on (VCC=11.4V to 16V), positive inputs start to clamp to VCC at about 1V above VCC, and this current must be maintained at no more than 3mA continuous, 5mA peak. Negative inputs can still go to -20V with VCC applied. An over-voltage of up to 1.5V above VCC is fine, as the input current is kept under 3mA continuous. To meet $V_{rft} = \pm 17.5V$ input protection when powered up, either use VCC=16V or apply a series resistor to each input to be protected, with suitable value to limit the fault current to under 3mA. For inputs more than 1.5V above VCC, each input clamp appears as a resistance in the range 325Ω to 850Ω in series with 1.5V. For example, use 270Ω series resistance with VCC=15V $\pm 5\%$. To divert input fault currents into GND instead of VCC, use an external clamp circuit (Figure 14 below). Over-voltage capability is limited by component power ratings. At $\pm 17.5V$, R1 dissipates 25mW, the Zeners 60mW/3mW.



Figure 14. Channel Input Over-Voltage Clamp Circuits

17 Current Source DACs

The LX7730 includes two DACs intended for setting sensor source currents and general purpose output currents or voltages:

- A 4-bit DAC that can only be used to set a current source in the nominal range 242.5μA to 3830μA which drives a selected multiplexer input for passive sensor stimulation
- A 10-bit DAC that can either:
 - Drive a selected multiplexer input with a current source with 31 steps in the nominal range 9.7μA to 300μA (in place of the 4-bit DAC), or
 - Drive the DAC_P and DAC_N pins as a complementary output DAC with 1023 steps up to nominal full-scale outputs of 0 to 2mA and 2 to 0mA respectively. The output currents are typically converted to voltages with external resistors, with a maximum output compliance range of 0 to 3V. A 1.5kΩ resistor to AGND is recommended (as shown in the recommended layout in Section 1 on page 2 for DAC outputs used. This value provides a nominal 3V maximum at 2mA full scale. Output glitches on DAC code changes can be smoothed with a 1nF or higher capacitance fitted in parallel with each resistor. If one of the DAC outputs is not used, the resistor can be replaced by a direct connection to AGND.

17.1 Configuring the 4-Bit DAC

The 4-bit DAC is powered on or off by the Current Source Disable bit D5 in the Function Enable register 1 (Table 17 on page 39). The Current Mux Level register 5 (Table 25 on page 47) configures the 4-bit DAC. See Section 0 on page 46 for details. Note that the 4-bit DAC is disabled by default on reset, to avoid driving an inappropriate input.

17.2 Configuring the 10-Bit DAC

The 10-bit DAC is powered on or off by the 10-Bit DAC bit D2 in the Function Enable register 1 (Table 17 on page 39). See Section 20.14 on page 55 for configuration details in either of the two modes outlined above.

When updating the DAC, the **DAC LSB register 15 must be written first**. When the DAC MSB register 14 is written, the two LSBs in the DAC LSB register 15 are combined with the eight bits just stored in the DAC MSB register 14. This 10-bit word is used immediately to update the 10-bit DAC.

18 Digital Interfaces

18.1 I/O Logic Levels

I/O logic levels are set by the voltage at the VDD logic supply pin, in the range 2.25V to 5.5V.

The CLK, A0/MISO_A, A2/CLKB, A3/MOSI_B, A4/MISO_B, D0 - D7, and PTY pins have a nominal $1M\Omega$ internal pulldown to GND.

The $\overline{\text{CE/SSA}}$, $\overline{\text{OE/CLKA}}$, $\overline{\text{WE/MOSI}}$ A, A1/SSB, $\overline{\text{SPI}}$ A, and $\overline{\text{SPI}}$ B pins have a nominal 1M Ω internal pullup to VDD.

18.2 Interfacing to 1.8V Logic

The LX7730 can interface to 1.8V logic by providing a toleranced VDD supply meeting 2.25V minimum. For example, a $2.32V \pm 3\%$ ranges from 2.25V to 2.39V. The maximum input threshold for the LX7730 logic inputs is 65% of VDD, so $2.39V \times 0.65 = 1.55V$ in this example. This is capable of operation from 1.8V logic outputs. For the LX7730's logic outputs, no special consideration is required for controller inputs that are over-voltage tolerant to the upper limit of the VDD supply (2.39V in the example above). Otherwise, each LX7730 logic output's voltage will have to be reduced with a resistive divider to meet the controller's 1.8V limit.

18.3 Interface Selection

The LX7730 includes a 25Mword/s parallel interface and two 12.5Mbit/s serial interfaces, which address the LX7730's 32 internal registers (Table 15 on page 37). The active interface is selected by the SPI_A and SPI_B input pins (Table 11 below):

- The parallel interface is selected when $\overline{SPI_A} = \overline{SPI_B} = 1$. This is also the idle state for the serial busses
- Serial interface A is selected by the falling edge of SPI A from the SPI A = SPI B = 1 idle state
- Serial interface B is selected by the falling edge of SPI B from the SPI A = SPI B = 1 idle state
- Serial interfaces need to return to the SPI A = SPI B = 1 idle state after activity

SPI_B	SPI_A	Interface Selection
1	1	Parallel
1	1↓0	SPI_A selected; any current parallel transmission aborted
1	0↑1	SPI_A transaction(s) finished, and serial busses returned to idle state
1↓0	1	SPI_B selected; any current parallel transmission aborted
0↑1	1	SPI_B transaction(s) finished, and serial busses returned to idle state

Table 11. Parallel and Serial Interface Selection Logic

A simplified schematic for the selection logic is shown in Figure 15 below. The NOR latch on the $\overline{SPI_A}$ and $\overline{SPI_B}$ inputs maintains the selected SPI interface until the current active-low $\overline{SPI_x}$ input returns high. If $\overline{SPI_A} = \overline{SPI_B} = 0$ on power-up, then the NOR latch will select an arbitrary serial interface until $\overline{SPI_A} = \overline{SPI_B} = 1$.

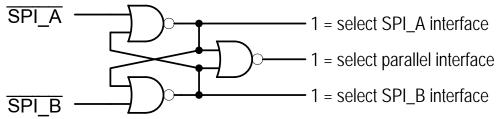


Figure 15. Simplified Parallel and Serial Interface Selection Logic

18.4 Using the Parallel Interface

The parallel interface is selected by setting the inputs $\overline{SPI_A} = 1$ and $\overline{SPI_B} = 1$. The parallel interface uses 5 register address pins A0 to A4, the 8 bidirectional data pins D0 to D7, a bidirectional parity pin PTY, an active-low chip enable pin \overline{CE} for reading and writing registers, an active-low output enable pin \overline{OE} for reading registers and an active-low write enable pin \overline{WE} for writing registers.

The PTY and ACK pins provide mandatory data validation for every write (Table 12 below). The LX7730 performs an even parity check on the 14-bit combination of the 5 address signals A0 to A4, the 8 data signals, and PTY itself. Parity is correct if there are an even number of 1s in this 14-bit word.

When the parallel bus is idle, the chip enable \overline{CE} , output enable \overline{OE} , and write enable \overline{WE} are inactive high. Multiple devices may share the same address and data bus by providing individual \overline{CE} and \overline{OE} lines for each device. Taking write enable \overline{WE} low while chip enable \overline{CE} and output enable \overline{OE} are both still active low tristates the D0 to D7 and parity PTY outputs. So the fault scenario of chip enable \overline{CE} , output enable \overline{OE} , and write enable \overline{WE} all being low is safe because the LX7730 will not output data on these 9 I/Os.

Pin Name	Direction	Description	Function for Read	Function for Write
CE	Input	Active low chip enable	Low	Low
ŌĒ	Input	Active low output enable for read	Low	High
WE	Input	Active low write enable	High	Low
A0 - A4	Input	Register address bit A0 (LSB) to A4 (MSB)	Register to read	Register to write
D0 - D7	I/O	Data byte D0 (LSB) to D7 (MSB)	Data from LX7730	Data to LX7730
PTY	I/O	Even parity bit (even number of 1s) for the combined address (A0 - A4), data (D0 - D7) bits, and the PTY signal. A write parity error sets the ACK output high	Parity bit from LX7730	Parity bit to LX7730
ACK	Output	Data write acknowledge output. ACK is active low to validate a data write to LX7730 (indicate no parity error)	-	Parity pass/fail

Table 12. Parallel Interface Selected by $[\overline{SPI_A} = 1 \text{ and } \overline{SPI_B} = 1]$

18.4.1 Writing to the LX7730 through the Parallel Interface

To write data to a register, \overline{OE} remains high. In any desired sequence take \overline{CE} low and set the desired register address A0 - A4, data byte D0 - D7, and parity bit PTY. Within 20ns of these signals stabilizing, the \overline{ACK} output will go low to indicate that the parity check has passed. Pulse \overline{WE} low for at least 15ns to latch the data into the register addressed (Figure 16). If the \overline{ACK} output is high (parity error) when \overline{WE} is pulsed low, then the data will not be latched into the LX7730. When writing multiple registers in a sequence, optionally leave \overline{CE} low for the duration of the repeated writes. It is also not necessary for \overline{CE} to go high when changing from writes to reads.

18.4.2 Reading the LX7730 through the Parallel Interface

To read data from a register, \overline{WE} remains high. In any desired sequence take \overline{CE} low and set the desired register address A0 - A4 to be read. 10ns minimum after these signals stabilizing, pulse \overline{OE} low for at least 30ns to transfer the register's data to the data pins D0 - D7 (Figure 16 below). The data byte and parity bit will be valid within 10ns. When reading multiple registers in a sequence, optionally leave \overline{CE} low for the duration of the repeated reads. It is also not necessary for \overline{CE} to go high when changing from reads to writes.

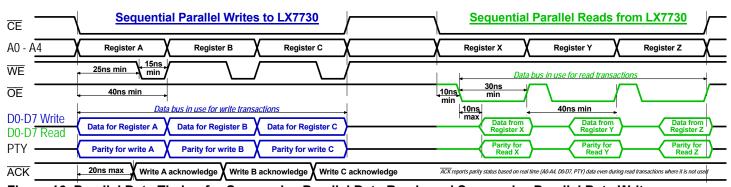


Figure 16. Parallel Data Timing for Successive Parallel Data Reads and Successive Parallel Data Writes

18.5 Using the Serial Interfaces

Serial interface A is selected by the falling edge of the SPI_A input while the SPI_B input is high (Table 13 below). Serial interface B is alternatively selected by the falling edge of the SPI_B input while the SPI_A input is high (Table 14 below).

The serial interface packs a W/\overline{R} bit, the 5 register address bits A4 to A0, the 8 data bits D7 to D0, and a parity bit P into a 15-bit word in that order. The parity bit provides mandatory data validation for every write. The LX7730 performs an even parity check on this 15-bit word. Parity is correct if there are an even number of 1s in the word.

Any number of 15 bit reads/writes are allowed while one SPI interface has control of the bus. An SPI interface releases control by returning its $\overline{\text{SPI}_x}$ select line high, at least 10ns after the rising edge of $\overline{\text{SSx}}$ at the end of the last transaction. Allow both $\overline{\text{SPI}_A}$ and $\overline{\text{SPI}_B}$ select lines to remain high for at least 10ns before selecting an SPI interface again.

Pin Name	SPI channel A interface (selected by SPI_A = 1 ↓ 0, while SPI_B = 1)	
SSA	Active low SPI select	
CLKA	Clock input	
MOSI_A	Data input	
MISO_A	Data output	
ACK	Data write acknowledge output. ACK is active low to validate each data write to LX7730 (indicate no parity error). Parity is correct if there are an even number of 1s in the 15-bit data transmission, including the parity bit. ACK remains valid until the next falling edge of SSA	

Table 13. SPI Channel A Interface

Pin Name	SPI channel B interface (selected by SPI_B = 1 ↓ 0, while SPI_A = 1)
SSB	Active low SPI Select
CLKB	Clock input
MOSI_B	Data input
MISO_B	Data output
ACK	Data write acknowledge output. ACK is active low to validate each data write to LX7730 (indicate no parity error). Parity is correct if there are an even number of 1s in the 15-bit data transmission, including the parity bit. ACK remains valid until the next falling edge of SSB

Table 14. SPI Channel B Interface

Figure 17 below shows the serial write timing. Use an 80ns minimum CLKA and CLKB period (12.5MHz), with 32ns minimum high time and 10ns minimum low time. Setup/hold time on MOSI is 10ns/0ns before/after the rising edge of CLKx reaches logic 1. Data is valid on MISO 10ns after the falling edge of CLKx reaches logic 0, and should be sampled on the subsequent rising edge of CLKx.

An SPI transaction must be exactly 15 bits long between \overline{SSA} or \overline{SSB} falling at the start of the transaction and rising again at the end. The serial interface does not simply retain and process the last 15 bits of a transmission. Instead, the LX7730 decodes each transmission on the fly, and so arbitrary length transmissions cannot be accepted.

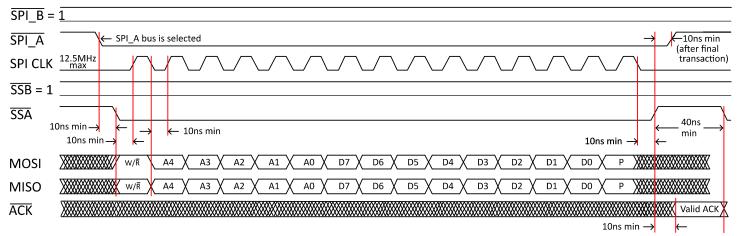


Figure 17. Serial Data Write Timing Diagram (SPI A taking control of the bus for a single transaction)

Digital Interfaces

Figure 18 and Figure 19 below show the serial read timing. The first transaction, shown in Figure 18, uses MOSI to set up the register address from which data is desired. The second transaction, shown in Figure 19, reads the requested register data on MISO while optionally using MOSI to set up the next register address from which data is desired. In the example here, the SPI_A select line is released high after the second transaction since no further reads or writes are required.

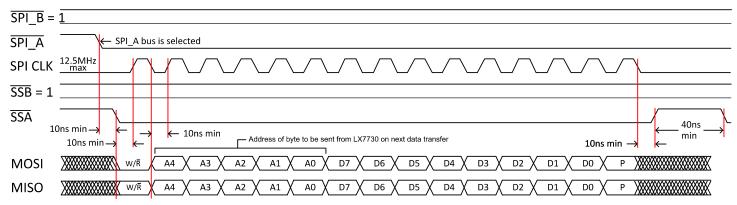


Figure 18. Serial Data Read Timing Diagram (first read transaction)

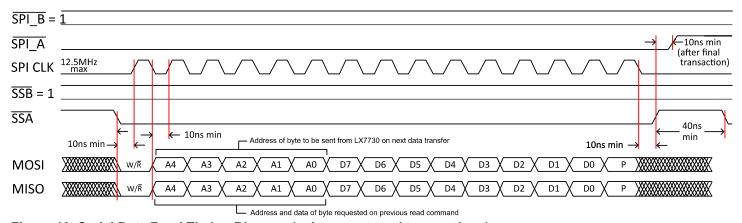


Figure 19. Serial Data Read Timing Diagram (subsequent read transactions)

Multiple LX7730s may share the same serial B bus by providing individual SPI_B lines for each device, and routing the SSB, CLKB, MOSI_B, MISO_B as common signals to all devices. All device SPI_A inputs remain high. When the bus is idle, all individual SPI_B inputs and SSB are high. To access a target device using a shared SPI_B port:

- 1. Set SPI B = 0 for the target device to select it. The other SPI B inputs remain high
- 2. After a minimum 10ns, set $\overline{SSB} = 0$
- 3. Execute the read or write sequence per Figure 17, Figure 18, and Figure 19
- 4. Set $\overline{SSB} = 1$
- 5. To execute another read or write sequence on the same device, continue to step 2 ensuring SSB = 1 for ≥40ns
- 6. Otherwise, set $\overline{SPIB} = 1$ so now the shared bus is in idle mode with all \overline{SSB} and individual \overline{SPIB} inputs high

Allowing multiple devices to share the same serial A bus is also possible, but is more complicated because the bus idle mode described above (SPI_A = SPI_B = 1) is also selecting the parallel interface, which shares control lines with the serial A bus. Contact factory for configuration details if sharing serial A bus is required.

Register Map 19

Table 15. Register Map

Table 15. F	Register Map												
Register	Function					er Data							
		D7	D6	D5	D4	D3	D2	D1	D0				
	eration Registers	387.		144.14 0 0 4 4									
0 (0x00)	Reset	Write-o	nly register.		o enter rese	t mode, any	other value f	or normal or	peration				
1 (0x01)	Function Enable	Chip Enable	Sensor Mux	Current Source Disable	Bank Bi-Level	Analog Amplifiers	10-Bit DAC	BLI/BLO Bi-Level	12-Bit ADC				
2 (0x02)	Power Status	Use IREF2	Monitor VCC	Monitor VEE	Monitor +5V	Monitor VREF	VCC UVLO	VEE UVLO	+5V UVLO				
3 (0x03)	Non- Inverting Mux Channel	-	-	Selec	t Bank [BD2	:BD0]	Select	2:PD0]					
4 (0x04)	Inverting Mux Channel	-	Use SE_RTN	Selec	t Bank [BD2	:BD0]	Select	Position [PD	2:PD0]				
5 (0x05)	Current Mux Level	Use DAC	-	-	-	Double		Set Current					
6 (0x06)	Current Mux Channel	-	-			Select (Channel						
7 (0x07)	Signal Conditioning Amplifier	-	Filter Off	2nd Pole I	requency	1st Pole F	requency	Amplifi	er Gain				
8 (0x08)	ADC Control	Auto Samp	e Rate Posi	tion [S2:S0]		Data Ready	Busy	Start Conv	ADC_IN = HiZ				
9 (0x09)	ADC Result MSB			ADC R	esult MSB [A								
10 (0x0A)	ADC Result LSB	0	0	0	0	ADC F	Result LSB [/	ADC_D3:AD	C_D0]				
11 (0x0B)	8-Bit Bank Bi-Level Comparators Threshold DAC			Thi	reshold DAC	[BI_D7:BI_	D0]						
12 (0x0C)	8-Bit Bank Bi-Level Comparators Input Selection	Use BL_TH	-	-	-	EN BL Sw Pos	Select B	Position					
13 (0x0D)	8-Bit Bank Bi-Level Comparators Output Status	Comp- arator 7	Comp- arator 6	Comp- arator 5	Comp- arator 4	Comp- arator 3	Comp- arator 2	Comp- arator 1	Comp- arator 0				
14 (0x0E)	10-Bit DAC MSB			DAC S	etting MSB [DAC_D9:DA	AC_D2]						
15 (0x0F)	10-Bit DAC LSB	0	0	0	0	0	0	DAC_D1	DAC_D0				
16 (0x10)	Calibration	IA Short	-	-	Cont Check	NP TEST	-	I GND	0				
Trim Adjus	tment and Factory Ca	alibration Re	egisters										
17 (0x11)	ОТР	-	-	-	-	-	-	OTP out select	OTP in select				
18 (0x12)	Trim 18		cmux[2:0]				vref[4:0]						
19 (0x13)	Trim 19		vbgto				offs	_					
20 (0x14)	Trim 20			vbg[4:0]				vtoi[4:2]					
21 (0x15)	Trim 21	vtoi			osc	[3:0]	T	ADCvt	:oi[4:3]				
22 (0x16)	Trim 22		ADCvtoi[2:0]		-	-	-	-	-				
23 (0x17)	Trim 23	lo_dis	-	-	-	-	-	-	-				
24 (0x18)	Trim 24 (unused)	-	-	-	-	-	-	-	-				
25 (0x19)	Trim 25 (unused)	-	-	-	-	-	-	-	-				
<u> </u>	ented Registers	^		^	^	^		^	^				
26 (0x1A)		0	0	0	0	0 0		0	0				
27 (0x1B)	Writes to these	0	0	0	0	0	0	0	0				
28 (0x1C)	addresses are not stored and reads	0	0	0	0	0	0	0	0				
29 (0x1D)	return 0x00	0	0	0	0	0	0	0	0				
30 (0x1E)		0	0	0	0	0	0	0	0				
31 (0x1F)		0	0	0	0	0	0	0	0				

Note 1: Unused bits marked "-" are implemented but not used, and may be written and read with any values. Note 2: Unused bits marked "0" are unimplemented. Writes are ignored, and the bits read back as 0.

20 Register Descriptions

20.1 Register address 0: Reset

When the Reset register 0 contains 0x6A, the LX7730 is in reset mode which sets all other registers to the power on reset (POR) state. Writes to the other registers are ignored in reset mode.

Toggling the RESET pin low then high also releases reset mode by clearing the Reset register 0 to 0x00. See Section 14 on page 21 for operation of the RESET pin.

To perform a reset, first write 0x6A to Reset register 0 (Table 16 below). Then over-write any other value (such as 0x00) to Reset register 0 to restore normal operation and allow register write access.

The Reset register is write-only. Reading the register will always return the value 0x00.

Table 16: Register 0: Reset

Register Description	Register				Regist	er Data			
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0
Reset LX7730 to Power-On Reset state	0	0	1	1	0	1	0	1	0
Set LX7730 for normal operation	0x00		Α	ny value	except b	011010	10' (0x6	۹)	
Default register setting on POR or RESET		0	0	0	0	0	0	0	0

20.2 Register address 1: Function Enable

The Function Enable register 1 (Table 17 below) provides the option to disable internal blocks for power saving. See Table 4 on page 20 for typical block operating currents and wakeup times. Clearing the Chip Enable bit D7 = 0 puts the LX7730 into standby mode with typical VCC consumption of 4mA.

Table 17. Register 1: Function Enable

Table 17. Register 1: Function Enable	Register								
Register Description	Address	D7	D6	D5	Register D4	D3	D2	D1	D0
Function Enable register	1 0x01	Chip Enable	Sensor Mux	Current Source Disable	Bank Bi-Level	Analog Ampli- fiers	10-Bit		
Default register setting on POR or RESET		1	1	1	1	1	1	1	1
12-Bit ADC powered down The CH1-CH64 inputs, instrumentation amplifier, antialias filter, multiplexer bank bi-level comparators, BLI/BLO bi-level comparator inputs are unaffected. Output of analog front end is available at the ADC_IN pin for acquisition by external ADC 12-Bit ADC enabled		1	x	х	х	х	х	x	0
BLI/BLO Bi-Level Comparators powered down									
BLI1-8 are Hi-Z. The multiplexer bank bi-level comparators are unaffected BLI/BLO Bi-Level Comparators enabled		1	х	х	x	х	х	0	х
10-bit DAC powered down DAC_P & DAC_N outputs are Hi-Z 10-bit DAC enabled		1	х	х	х	х	0	х	х
Instrumentation Amplifier powered down The instrumentation amplifier driving the anti-alias filter is powered down, so multiplexer inputs will not reach the ADC. The multiplexer bank bi-level comparators are not affected. The ADC can acquire an external signal on the ADC_IN pin after powering down the anti-alias filter by setting Signal Conditioning Amplifier register 7-bit D6 (Table 27 on page 49) Instrumentation Amplifier enabled Bank Bi-Level Comparators powered down The multiplexer bank bi-level comparators are		1	x	х	x	0	×	x	x
disabled. CH1-CH64 inputs, ADC, BLI/BLO bi-level comparator are unaffected	1 0x01		1 X	x	0	x	х	x x	х
Multiplexer Current Source enabled The current source is selected and configured by the Current Mux Level register 5 (Table 25 on page 47). The current source is directed to the input channel CH1 to CH64 selected by the Current Mux Channel Selection register 6 (Table 26 on page 48) Multiplexer Current Source powered down The 10-bit DAC may still be used to drive its DAC_P & DAC_N outputs if enabled by setting bit D2 = 1 and clearing bit D7 = 0 in the Current Mux Level register 5 (Table 25 on page 47)		1	x	0	X	x	X	x	х
CH1-CH64 Multiplexer powered down (disabling Multiplexer Bank Bi-Level Comparators also) CH1-CH64 inputs are Hi-Z. The BLI/BLO bi-level comparator inputs are unaffected CH1-CH64 Multiplexer enabled		1	0	x	x (0 saves power)	x	х	x	x
Standby mode Digital interface is operational. CH1-CH64 & BLI1-BLI8 inputs, and DAC_N & DAC_P outputs are Hi-Z		0	x	х	x	х	х	х	х
Operating mode The LX7730 is in normal operation, with optional analog blocks disabled per the [D6-D0] settings. Typical wakeup time from sleep mode is 333µs		1	See Tab	le 4 on pa	og blocks a ge 20 and rrents and	Table 5	on page	e 20 for typ	oical

20.3 Register address 2: Power Status

The Power Status register 2 (Table 18 below) provides the option to check for a UVLO condition or to monitor the power rails. There is also a bit for selection of the redundant IREF pin.

The Monitor VCC, Monitor VEE, Monitor +5V, and Monitor VREF bits [D6:D3] can be used to route one of these 4 power supply voltages, with attenuation, directly to the ADC. This over-rides the settings of both the Non-Inverting Mux Channel Select register 3 (Table 19 on page 41) and the Inverting Mux Channel Select register 4 (Table 22 on page 44).

When selecting Monitor VREF, note that when VREF is also being used as the reference for the ADC, then the ADC result will be ratiometric. After setting the signal conditioning amplifier gain to 0.4 (Table 27 on page 49), the Monitor VREF signal will appear at the ADC input as (0.4 x VREF/2). Since the internal reference to the ADC is (0.4 x VREF = 2V), the ADC conversion will always appear as nominally half-scale (0x800). In this case, VREF must be monitored relative to a known external voltage such as VCC.

The Calibration register 16 (Table 37 on page 59) offers more over-rides to the instrumentation amplifier inputs. However, bits [D6:D3] in register 2 below have priority over Calibration register settings.

Table 18: Register 2: Power Status

Register D	Register				Register I	Data				
Register D	escription	Address	D7	D6	D5	D4	D3	D2	D1	D0
Power Stat	us register	2 0x02	Use IREF2	Monitor VCC	Monitor VEE	Monitor +5V	Monitor VREF	VCC UVLO	VEE UVLO	+5V UVLO
Default register settir	ng on POR or RESET	0.02	0	0	0	0	0	X	X	0
+5V rail is more positive that	an +4.15V UVLO threshold									0
+5V rail is more negative the	an +3.95V UVLO		Х	Х	Х	Х	Х	Х	Х	1
VEE rail is more negative the	nan -8.2V UVLO threshold		х	Х	х	Х	х	х	0	Х
VEE rail is more positive th	an -8V UVLO threshold		^	^	^	^	^	^	1	^
VCC rail is more positive th	1						0			
VCC rail is more negative threshold		х	Х	Х	Х	Х	1	Х	Х	
Instrumentation amplifier's non-inverting input voltage is over- ridden to be:	Instrumentation amplifier's inverting input voltage is over- ridden to be:	2 0x02	x	of the N	:D3] over lon-Invert innel Sele	х	х	X		
No action when [D6:D3] = b	0000'		Х	0	0	0	0	Х	Х	Х
VREF pin divided by 2	AGND		Х	0	0	0	1	Х	Х	х
+5V pin divided by 2	AGND		Х	0	0	1	Х	Х	Х	Х
AGND	VEE pin divided by 6		Х	0	1	Х	Х	х	х	х
VCC pin divided by 6	AGND		Х	1	Х	Х	Х	Х	х	Х
Internal reference current is resistor from IREF1 pin to A		0	x	x	x	x	х	х	х	
Internal reference current is resistor, IREF2, instead of a			1	^	^	^	^	^	*	^

20.4 Register address 3: Non-Inverting Mux Channel Select

The Non-Inverting Mux Channel Select register 3 (Table 19 below) selects which of the inputs CH1 to CH64 is routed by the analog multiplexer to the non-inverting input of the instrumentation amplifier.

The [BD2:BD0] and [PD2:PD0] bits select an input channel. The 3 bits [BD2:BD0] select a multiplexer bank, and the 3 bits [PD2:PD0] select a multiplexer position (Table 20 on page 42, Table 21 on page 43). The bank and position select corresponds to channel number CH1-CH64 according to the following equation:

 $CHANNEL = [BD2 : BD0] + (8 \times [PD2 : PD0]) + 1$

Equation 2. Multiplexer Input Channel Selection

The setting in this register is ignored (over-ridden) by any of the following settings:

- One or more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, +5V, VEE, and VCC rails. See Table 18 on page 40
- Either or both of the 2 bits D4 and D3 in the Calibration register 16 is set. These settings are used for testing and calibration. See Table 37 on page 59

Table 19: Register 3: Non-Inverting Mux Channel Select

Pagistar Description	Register Description			Register Data									
Register Description		Address	D7	D6	D5	D4	D3	D2	D1	D0			
Non-Inverting Mux Channel Select re	egister	3	-	-	BD2	BD1	BD0	PD2	PD1	PD0			
Default register setting on POR or F	RESET	0x03	0	0	0	0	0	0	0	0			
The instrumentation amplifier's non-inverting input one of channel CH1-CH64 selected by the equation $CHANNEL = [BD2 : BD0] + (8 \times [PD2 : PD0]) + 3$	ion:		х	х	BD2	BD1	BD0	PD2	PD1	PD0			
Selected channel is [0] + (8 X [0]) + 1 = CH1					0	0	0	0	0	0			
Selected channel is [1] + (8 X [0]) + 1 = CH2					0	0	1	0	0	0			
Selected channel is [2] + (8 X [0]) + 1 = CH3					0	1	0	0	0	0			
TORRECTED CHAINTENS 131 T to A 1011 T 1 - CH4 1	Table 20 on page 42 provides selection codes for channels CH1 to CH32				0	1	1	0	0	0			
					1	0	0	0	0	0			
0 1 4 1 1 1: [5] (0)([6]) 4 0110					1	0	1	0	0	0			
Selected channel is [6] + (8 X [0]) + 1 = CH7					1	1	0	0	0	0			
Selected channel is [7] + (8 X [0]) + 1 = CH8					1	1	1	0	0	0			
Selected channel is [0] + (8 X [1]) + 1 = CH9		3 0x03	х		0	0	0	0	0	1			
and so on		0,000		Х			and	so on					
Selected channel is [7] + (8 X [6]) + 1 = CH56					1	1	1	1	1	0			
Selected channel is [0] + (8 X [7]) + 1 = CH57					0	0	0	1	1	1			
	Table 21 on page				0	0	1	1	1	1			
	43 provides selection codes				0	1	0	1	1	1			
Coloated shapped in [2] + (0 V [7]) + 1 = CUCO	for channels				0	1	1	1	1	1			
0 1 1 1 1 11 11 10 10 11 11 11 11 11 11	CH33 to CH64				1	0	0	1	1	1			
Selected channel is [5] + (8 X [7]) + 1 = CH62					1	0	1	1	1	1			
Selected channel is [6] + (8 X [7]) + 1 = CH63								1	1	0	1	1	1
Selected channel is [7] + (8 X [7]) + 1 = CH64						1	1	1	1	1	1		
Unused register bits. Values written are stored ar	nd read back		0/1	0/1	Х	Х	Х	Х	Х	Х			

Table 20. Non-Inverting Mux Channel Select Codes for Channels CH1 to CH32

Pagister Pagariation	Register		., .,		Regis	ter Da	ta					
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0			
Inverting Mux Channel Select register	3	-	-	BD2	BD1	BD0	PD2	PD1	PD0			
Default register setting on POR or RESET	0x03	0	0	0	0	0	0	0	0			
The instrumentation amplifier's non-inverting input is routed from one of channel CH1-CH64 selected by the equation:		х	х	BD2	BD1	BD0	PD2	PD1	PD0			
Select channel CH1 with code b'xx000000' or 0x00				0	0	0						
Select channel CH2 with code b'xx001000' or 0x08				0	0	1						
Select channel CH3 with code b'xx010000' or 0x10	0 1 0											
Select channel CH4 with code b'xx011000' or 0x18				0	1	1	0	0	0			
Select channel CH5 with code b'xx100000' or 0x20				1	0	0		·				
Select channel CH6 with code b'xx101000' or 0x28				1	0	1						
Select channel CH7 with code b'xx110000' or 0x30				1	1	0						
Select channel CH8 with code b'xx111000' or 0x38				1	1	1						
Select channel CH9 with code b'xx000001' or 0x01				0	0	0						
Select channel CH10 with code b'xx001001' or 0x09				0	0	1						
Select channel CH11 with code b'xx010001' or 0x11				0	1	0						
Select channel CH12 with code b'xx011001' or 0x19				0	1	1	0	0	1			
Select channel CH13 with code b'xx100001' or 0x21				1	0	0			'			
Select channel CH14 with code b'xx101001' or 0x29				1	0	1						
Select channel CH15 with code b'xx110001' or 0x31	3			1	1	0						
Select channel CH16 with code b'xx111001' or 0x39	0x03	х	x	1	1	1						
Select channel CH17 with code b'xx000010' or 0x02		X	_ ×	0	0	0						
Select channel CH18 with code b'xx001010' or 0x0A				0	0	1						
Select channel CH19 with code b'xx010010' or 0x12				0	1	0						
Select channel CH20 with code b'xx011010' or 0x1A				0	1	1	0	1	0			
Select channel CH21 with code b'xx100010' or 0x22				1	0	0	U	1	U			
Select channel CH22 with code b'xx101010' or 0x2A				1	0	1						
Select channel CH23 with code b'xx110010' or 0x32				1	1	0						
Select channel CH24 with code b'xx111010' or 0x3A				1	1	1						
Select channel CH25 with code b'xx000011' or 0x03				0	0	0						
Select channel CH26 with code b'xx001011' or 0x0B				0	0	1						
Select channel CH27 with code b'xx010011' or 0x13				0	1	0						
Select channel CH28 with code b'xx011011' or 0x1B				0	1	1						
Select channel CH29 with code b'xx100011' or 0x23				1	0	0	0	1	1			
Select channel CH30 with code b'xx101011' or 0x2B				1	0	1						
Select channel CH31 with code b'xx110011' or 0x33							1	1	0			
Select channel CH32 with code b'xx111011' or 0x3B			 	1	1	1						
Unused register bits. Values written are stored and read back		0/1	0/1	Х	Х	Х	Х	Х	Х			

Table 21. Non-Inverting Mux Channel Select Codes for Channels CH33 to CH64

Register Description	Register				Regis	ter Da	ta				
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0		
Inverting Mux Channel Select register	3	-	-	BD2	BD1	BD0	PD2	PD1	PD0		
Default register setting on POR or RESET	0x03	0	0	0	0	0	0	0	0		
The instrumentation amplifier's non-inverting input is routed from one of channel CH1-CH64 selected by the equation:		х	х	BD2	BD1	BD0	PD2	PD1	PD0		
Select channel CH33 with code b'xx000100' or 0x04				0	0	0					
Select channel CH34 with code b'xx001100' or 0x0C				0	0	1					
Select channel CH35 with code b'xx010100' or 0x14				0	1	0					
Select channel CH36 with code b'xx011100' or 0x1C				0	1	1	1	0	0		
Select channel CH37 with code b'xx100100' or 0x24				1	0	0	•		"		
Select channel CH38 with code b'xx101100' or 0x2C				1	0	1					
Select channel CH39 with code b'xx110100' or 0x34				1	1	0					
Select channel CH40 with code b'xx111100' or 0x3C				1	1	1					
Select channel CH41 with code b'xx000101' or 0x05				0	0	0					
Select channel CH42 with code b'xx001101' or 0x0D				0	0	1					
Select channel CH43 with code b'xx010101' or 0x15				0	1	0					
Select channel CH44 with code b'xx011101' or 0x1D				0	1	1	1	0	1		
Select channel CH45 with code b'xx100101' or 0x25				1	0	0	•		'		
Select channel CH46 with code b'xx101101' or 0x2D				1	0	1					
Select channel CH47 with code b'xx110101' or 0x35	3			1	1	0		0			
Select channel CH48 with code b'xx111101' or 0x3D	0x03	х	x	1	1	1					
Select channel CH49 with code b'xx000110' or 0x06		_ ^	^	0	0	0					
Select channel CH50 with code b'xx001110' or 0x0E				0	0	1					
Select channel CH51 with code b'xx010110' or 0x16				0	1	0					
Select channel CH52 with code b'xx011110' or 0x1E				0	1	1	1	1	0		
Select channel CH53 with code b'xx100110' or 0x26				1	0	0	•	'			
Select channel CH54 with code b'xx101110' or 0x2E				1	0	1					
Select channel CH55 with code b'xx110110' or 0x36				1	1	0					
Select channel CH56 with code b'xx111110' or 0x3E				1	1	1					
Select channel CH57 with code b'xx000111' or 0x07	0 0 0										
Select channel CH58 with code b'xx001111' or 0x0F				0	0	1					
Select channel CH59 with code b'xx010111' or 0x17				0	1	0					
Select channel CH60 with code b'xx011111' or 0x1F				0	1	1	1	1	1		
Select channel CH61 with code b'xx100111' or 0x27				1	0	0	'	'	'		
Select channel CH62 with code b'xx101111' or 0x2F				1	0	1					
Select channel CH63 with code b'xx110111' or 0x37		1	0								
Select channel CH64 with code b'xx111111' or 0x3F		L		1	1	1					
Unused register bits. Values written are stored and read back		0/1	0/1	Х	Х	Х	Х	Х	Х		

20.5 Register address 4: Inverting Mux Channel Select

The Inverting Mux Channel Select register 4 (Table 22 below) selects which of one the inputs CH1 to CH64 or the SE_RTN pin is routed by the analog multiplexer to the inverting input of the instrumentation amplifier.

If the Use SE_RTN bit D6 is 0, then the [BD2:BD0] and [PD2:PD0] bits select an input channel. The 3 bits [BD2:BD0] select a multiplexer bank, and the 3 bits [PD2:PD0] select a multiplexer position (Table 23 on page 45, Table 24 on page 46). The bank and position select corresponds to channel number CH1-CH64 according to the following expression:

 $CHANNEL = [BD2 : BD0] + (8 \times [PD2 : PD0]) + 1$

Equation 3. Multiplexer Input Channel Selection

If the Use SE_RTN bit D6 is 1, then the [BD2:BD0] and [PD2:PD0] bits are ignored, and the inverting input of the instrumentation amplifier is connected to the voltage on the SE_RTN pin. The SE_RTN pin allows a remote ground point that is common to multiple single ended inputs to be used as a signal reference without sacrificing one of the 64 multiplexer inputs.

The setting in this register is ignored (over-ridden) by any of the following settings:

- One of more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, +5V, VEE, and VCC rails. See Table 18 on page 40
- Either or both of the 2 bits D7 and D4 in the Calibration register 16 is set. These settings are used for testing and calibration. See Table 37 on page 59
- Setting the D1 bit in the Calibration register 16 causes the inverting input of the instrumentation amplifier to be connected to AGND, over-riding the SE_RTN setting in the Inverting Mux Channel Select register. This provides a internal ground connection for local single ended inputs without using the SE_RTN pin. See Table 36 on page 58

Table 22: Register 4: Inverting Mux Channel Select

Register Description		Register									
Register Description		Address	D7	D6	D5	D4	D3	D2	D1	D0	
Inverting Mux Channel Select reg	jister	4 0x05	-	Use SE_RTN	BD2	BD1	BD0	PD2	PD1	PD0	
Default register setting on POR or	RESET	0.005	0	0	0	0	0	0	0	0	
The instrumentation amplifier's inverting input is routed from one of channel CH1-CH64 selected by the equation:			х	0	BD2	BD1	BD0	PD2	PD1	PD0	
Selected channel is [0] + (8 X [0]) + 1 = CH1					0	0	0	0	0	0	
Selected channel is [1] + (8 X [0]) + 1 = CH2					0	0	1	0	0	0	
Selected channel is [2] + (8 X [0]) + 1 = CH3	T-1-1- 00				0	1	0	0	0	0	
Selected channel is [3] + (8 X [0]) + 1 = CH4	Table 23 on page 45 provides				0	1	1	0	0	0	
Selected channel is [4] + (8 X [0]) + 1 = CH5	selection codes for channels CH1 to CH32				1	0	0	0	0	0	
Selected channel is [5] + (8 X [0]) + 1 = CH6					1	0	1	0	0	0	
Selected channel is [6] + (8 X [0]) + 1 = CH7					1	1	0	0	0	0	
Selected channel is [7] + (8 X [0]) + 1 = CH8					1	1	1	0	0	0	
Selected channel is [0] + (8 X [1]) + 1 = CH9		4			0	0	0	0	0	1	
and so on		0x04	Х	0				so on .			
Selected channel is [7] + (8 X [6]) + 1 = CH56					1	1	1	1	1	0	
Selected channel is [0] + (8 X [7]) + 1 = CH57	T 11 04				0	0	0	1	1	1	
Selected channel is [1] + (8 X [7]) + 1 = CH58	Table 24 on page 46 provides				0	0	1	1	1	1	
Selected channel is [2] + (8 X [7]) + 1 = CH59	selection codes				0	1	0	1	1	1	
Selected channel is [3] + (8 X [7]) + 1 = CH60	for channels				0	1	1	1	1	1	
Selected channel is [4] + (8 X [7]) + 1 = CH61	CH33 to CH64				1	0	0	1	1	1	
Selected channel is [5] + (8 X [7]) + 1 = CH62					1	0	1	1	1	1	
Selected channel is [6] + (8 X [7]) + 1 = CH63					1	1	0	1	1	1	
Selected channel is [7] + (8 X [7]) + 1 = CH64					1	1	1	1	1	1	
The instrumentation amplifier's inverting input is routed from the SE_RTN pin			Х	1	x	х	x	х	х	х	
Unused register bit. Value written is stored and reads back			0/1	Х	Х	Х	Х	Х	Х	Χ	

Table 23. Register 4: Inverting Mux Channel Select Codes for Channels CH1 to CH32

able 23. Register 4: Inverting Mux Channel Select Codes for Channels CH1 to CH32											
Register Description	Register Address	-	D 0		egister		D0		D 0		
	Address	D7	D6	D5	D4	D3	D2	D1	D0		
Inverting Mux Channel Select register	4 0x05	•	Use SE_RTN	BD2	BD1	BD0	PD2	PD1	PD0		
Default register setting on POR or RESET	02100	0	0	0	0	0	0	0	0		
The instrumentation amplifier's inverting input is routed from one of channel CH1-CH64 selected by the equation:		х	0	BD2	BD1	BD0	PD2	PD1	PD0		
Select channel CH1 with code b'x0000000' or 0x00				0	0	0					
Select channel CH2 with code b'x0001000' or 0x08				0	0	1					
Select channel CH3 with code b'x0010000' or 0x10				0	1	0					
Select channel CH4 with code b'x0011000' or 0x18				0	1	1	0	0	0		
Select channel CH5 with code b'x0100000' or 0x20				1	0	0					
Select channel CH6 with code b'x0101000' or 0x28				1	0	1					
Select channel CH7 with code b'x0110000' or 0x30				1	1	0					
Select channel CH8 with code b'x0111000' or 0x38				1	1	1					
Select channel CH9 with code b'x0000001' or 0x01				0	0	0					
Select channel CH10 with code b'x0001001' or 0x09				0	0	1					
Select channel CH11 with code b'x0010001' or 0x11			0 0 1	0	1	0					
Select channel CH12 with code b'x0011001' or 0x19				1	1	0	0	1			
Select channel CH13 with code b'x0100001' or 0x21				1	0	0	· ·		•		
Select channel CH14 with code b'x0101001' or 0x29				1	0	1					
Select channel CH15 with code b'x0110001' or 0x31				1	1	0					
Select channel CH16 with code b'x0111001' or 0x39	4	х	0	1	1	1					
Select channel CH17 with code b'x0000010' or 0x02	0x04	^	· ·	0	0	0					
Select channel CH18 with code b'x0001010' or 0x0A			ı	0	0	1					
Select channel CH19 with code b'x0010010' or 0x12				0	1	0					
Select channel CH20 with code b'x0011010' or 0x1A				0	1	1	0	1	0		
Select channel CH21 with code b'x0100010' or 0x22				1	0	0	U	•	0		
Select channel CH22 with code b'x0101010' or 0x2A				1	0	1					
Select channel CH23 with code b'x0110010' or 0x32				1	1	0					
Select channel CH24 with code b'x0111010' or 0x3A				1	1	1					
Select channel CH25 with code b'x0000011' or 0x03				0	0	0					
Select channel CH26 with code b'x0001011' or 0x0B				0	0	1					
Select channel CH27 with code b'x0010011' or 0x13				0	1	0					
Select channel CH28 with code b'x0011011' or 0x1B				0	1	1	0	1	1		
Select channel CH29 with code b'x0100011' or 0x23				1	0	0	· ·	•	•		
Select channel CH30 with code b'x0101011' or 0x2B				1	0	1					
Select channel CH31 with code b'x0110011' or 0x33				1	1	0					
Select channel CH32 with code b'x0111011' or 0x3B				1	1	1					
The instrumentation amplifier's inverting input is routed from the SE_RTN pin		Х	1	х	х	х	х	х	х		
Unused register bit. Value written is stored and reads back]	0/1	Х	Х	Х	Х	Х	Х	Х		

Table 24. Register 4: Inverting Mux Channel Select Codes for Channels CH33 to CH64

Table 24. Register 4: Inverting Mux Channel Select Code	Register		3 01133 (0		Register Data							
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0			
	_		Use									
Inverting Mux Channel Select register	4 0x05	-	SE_RTN	BD2	BD1	BD0	PD2	PD1	PD0			
Default register setting on POR or RESET	0,000	0	0	0	0	0	0	0	0			
The instrumentation amplifier's inverting input is routed from one												
of channel CH1-CH64 selected by the equation:		Х	0	BD2	BD1	BD0	PD2	PD1	PD0			
$CHANNEL = [BD2 : BD0] + (8 \times [PD2 : PD0]) + 1$												
Select channel CH33 with code b'x0000100' or 0x04				0	0	0						
Select channel CH34 with code b'x0001100' or 0x0C				0	0	1						
Select channel CH35 with code b'x0010100' or 0x14			0	1	0							
Select channel CH36 with code b'x0011100' or 0x1C				0	1	1	1	0	0			
Select channel CH37 with code b'x0100100' or 0x24				1	0	0	•					
Select channel CH38 with code b'x0101100' or 0x2C		1 0 1										
Select channel CH39 with code b'x0110100' or 0x34				1	1	0	<u> </u>					
Select channel CH40 with code b'x0111100' or 0x3C				1	1	1						
Select channel CH41 with code b'x0000101' or 0x05				0	0	0						
Select channel CH42 with code b'x0001101' or 0x0D			0	0	1							
Select channel CH43 with code b'x0010101' or 0x15					0	1	0					
Select channel CH44 with code b'x0011101' or 0x1D	1			0	1	1		_				
Select channel CH45 with code b'x0100101' or 0x25	1			1	0	0	1	0	1			
Select channel CH46 with code b'x0101101' or 0x2D	1			1	0	1						
Select channel CH47 with code b'x0110101' or 0x35	1			1	1	0						
Select channel CH48 with code b'x0111101' or 0x3D	4		0	1	1	1						
Select channel CH49 with code b'x0000110' or 0x06	0x04	Х	0	0	0	0	0					
Select channel CH50 with code b'x0001110' or 0x0E	1			0	0	1						
Select channel CH51 with code b'x0010110' or 0x16				0	1	0						
Select channel CH52 with code b'x0011110' or 0x1E	1			0	1	1	_					
Select channel CH53 with code b'x0100110' or 0x26	1			1	0	0	1	1	0			
Select channel CH54 with code b'x0101110' or 0x2E				1	0	1						
Select channel CH55 with code b'x0110110' or 0x36	T	1	1	0								
Select channel CH56 with code b'x0111110' or 0x3E	1			1	1	1						
Select channel CH57 with code b'x0000111' or 0x07				0	0	0						
Select channel CH58 with code b'x0001111' or 0x0F				0	0	1						
Select channel CH59 with code b'x0010111' or 0x17				0	1	0						
Select channel CH60 with code b'x0011111' or 0x1F				0	1	1						
Select channel CH61 with code b'x0100111' or 0x27	;)			1	0	0	1	1	1			
Select channel CH62 with code b'x0101111' or 0x2F				1	0	1						
Select channel CH63 with code b'x0110111' or 0x37				1	1	0						
Select channel CH64 with code b'x0111111' or 0x3F		-		1	1	1						
The instrumentation amplifier's inverting input is routed from the SE_RTN pin		Х	1	х	х	х	х	х	х			
Unused register bit. Value written is stored and reads back	1	0/1	х	Х	Х	Х	Х	Х	Х			
		ì		,,								

20.6 Register address 5: Current Mux Level

The Current Mux Level register 5 (Table 25 below) sets the current in the 4-bit IDAC multiplexer current source. The Double bit D3 selects between low and high ranges. When the Double bit D3 = 1, the current set by bits [D2:D0] is doubled. Table 25 below shows the programmed current (with tolerances) for all 16 options, in order of increasing current, and a guide to the maximum voltage that the IDAC current source can rise to without a reduction in current output. Exceeding this voltage won't cause any damage, but risks a drop in current as the channel voltage approaches VCC. Equation 4 below shows the maximum recommended channel input voltage is calculated, as a function of both the VCC supply voltage and the programmed IDAC current. The other channel input voltage limit is ±10V per the Operating Rating table 8 on page 11.

Maximum IDAC Voltage = $VCC - (1.25 \times Current in mA) - 3.5 V$

Equation 4. Maximum IDAC Multiplexer Current Source Voltage

The 10-bit DAC may be used as the input channel multiplexer instead of the IDAC by setting Use DAC bit D7 = 1 (Table 25 below). When assigned as the internal multiplexer current source, the 10-bit DAC is configured as 5-bit programmable current source in the range 0 to 300µA. See Table 35 on page 57 for 10-bit DAC configuration in this mode.

When Use DAC bit D7 = 0, the 10-bit DAC is available as a general-purpose DAC, with complementary outputs on the DAC P output pin and the DAC N output pin. See Table 34 on page 56 for 10-bit DAC configuration in this mode.

Table 25: Register 5: Current Mux Level

Register Description	Register			R	egis	ter Data				Maxi	mum
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0		oltage
Current Mux Level register	5 0x05	Use DAC	-	-	-	Double	D2	D1	D0	IDAC C	intain Current
Default register setting on POR or RESET	0203	0	0	0	0	0	0	0	0	Accı	iracy
Use IDAC in low range. Current is ({D3:D0} + 1) / 8 x 242.5µA		0	х	х	х	0	D2	D1	D0	VCC =	VCC =
Use IDAC in high range. Current is ({D3:D0} + 1) / 8 x 478.75μA			^	^	^	1	D2		Do	11.4V	14.25V
IDAC (low range) current is set to 242.5µA ±15µA (±6.2%)						0	0	0	0	7.5V	10V
IDAC (high range) current is set to 478.75μA ±30μA (±6.3%)						1	0	0	0	7.2V	10V
IDAC (low range) current is set to 485μA ±22.5μA (±4.6%)						0	0	0	1	7.2V	10V
IDAC (low range) current is set to 727.5μA ±30μA (±4.1%)						0	0	1	0	6.9V	9.8V
IDAC (high range) current is set to 957.5μA ±45μA (±4.7%)						1	0	0	1	6.6V	9.4V
IDAC (low range) current is set to 970μA ±37.5μA (±3.9%)						0	0	1	1	6.6V	9.4V
IDAC (low range) current is set to 1212.5μA ±45μA (±3.7%)						0	1	0	0	6.3V	9.1V
IDAC (high range) current is set to 1436.25µA ±60µA (±4.2%)		0				1	0	1	0	6V	8.8V
IDAC (low range) current is set to 1455µA ±52.5µA (±3.6%)	5	U				0	1	0	1	6V	8.8V
IDAC (low range) current is set to 1697.5μA ±60μA (±3.5%)	0x05					0	1	1	0	5.7V	8.5V
IDAC (high range) current is set to 1915μA ±75μA (±3.9%)						1	0	1	1	5.4V	8.2V
IDAC (low range) current is set to 1940μA ±60μA (±3.1%)						0	1	1	1	5.4V	8.2V
IDAC (high range) current is set to 2393.75µA ±90µA (±3.8%)						1	1	0	0	4.7V	7.6V
IDAC (high range) current is set to 2872.5μA ±105μA (±3.7%)						1	1	0	1	4.1V	7V
IDAC (high range) current is set to 3351.25µA ±120µA (±3.6%)						1	1	1	0	3.5V	6.4V
IDAC (high range) current is set to 3830μA ±135μA (±3.5%)						1	1	1	1	2.9V	5.7V
Unused register bits. Values written are stored and read back		Х	0/1	0/1	0/1	Х	Χ	Χ	Χ		
Use the 10-bit DAC as the programmable current source to the input channel multiplexer instead of the IDAC. The 10-bit DAC is configured by registers 14 and 15 (Table 34 on page 56)		1	х	х	х	х	x	х	x		

Equation 5 below shows how IDAC current is calculated for Table 25 using the full scale current and DAC INL tolerances:

Double bit D3 = 0: Multiplexor Current = $\{([D2 : D0] + 1) / 8 \times (1940 \mu A \pm 60 \mu A)\} \pm 7.5 \mu A\}$

Double bit D3 = 1: Multiplexor Current = $\{([D2 : D0] + 1) / 8 \times (3830 \mu A \pm 120 \mu A)\} \pm 15 \mu A$

Equation 5. 4-bit IDAC Multiplexer Current Source Transfer Characteristic

Example 1: Double bit D3 = 0, [D2:D0] = 011

Multiplexor Current = $\{([3] + 1) / 8 \times (1940 \mu A \pm 60 \mu A)\} \pm 7.5 \mu A = 970 \mu A \pm 30 \mu A \pm 7.5 \mu A = 970 \mu A \pm 37.5 \mu A$

Example 2: Double bit D3 = 1, [D2:D0] = 001

Multiplexor Current = $\{([1] + 1) / 8 \times (3830 \mu A \pm 120 \mu A)\} \pm 15 \mu A = 957.5 \mu A \pm 30 \mu A \pm 15 \mu A = 957.5 \mu A \pm 45 \mu A$

20.7 Register address 6: Current Mux Channel Selection

The Current Mux Select register 6 (Table 26 below) selects which one of the 64 input channels CH1-CH64 that the selected multiplexer current source is routed to.

Allow a 10µs settling time for the current source when changing either the current level or the target input channel. As discussed in section 20.9, the current source can be switched to another input any time after the 25th CLK rising edge of an ADC conversion without affecting a conversion underway that used the current source. This allows 14 CLKs (28µs with a 500kHz CLK) settling time before a subsequent ADC conversion using the current source for a different channel.

Allow more settling time when switching the current source to inputs with high capacitance, such as due to passive filter networks. An acquisition sequence can usually be planned to space slow-settling inputs apart, taking advantage of the independence of current source channel selection to ADC input channel selection.

To apply a current source to an input channel:

- Select which input channel that the selected multiplexer current source is routed to using the Current Mux Select register 6 (Table 26 below)
- Enable the current source circuitry by clearing Current Source Disable bit D5 = 0 in the Function Enable register 1 (Table 17 on page 39)
- Configure the Current Mux Level register 5 (Table 25 on page 47)
 - To use the 4-bit IDAC current source, clear Use DAC bit D7 = 0, and select the desired current level with the remaining bits
 - To use the 10-bit DAC as the multiplexer current source instead of the IDAC, set Use DAC bit D7 = 1, and select the desired multiplexer current level using the 10-bit DAC registers 14 and 15 (Table 35 on page 57)

To disable current sourcing to any multiplexer input channel, either:

- Disable the current source circuitry by setting Current Source Disable bit D5 = 1 in the Function Enable register 1 (Table 17 on page 39), or
- Set the programmed multiplexer source current to 0µA by:
 - Selecting the 10-bit DAC as the multiplexer current source by writing 0x80 to the Current Mux Level register 5 (Table 25 on page 47), and
 - Setting the 10-bit DAC current to 0μA by first writing 0x00 to the 10-bit DAC LSB register 15, and then writing 0x00 to the 10-bit DAC MSB register 14 (Table 35 on page 57)

Register Description	Register									
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0	
Current Mux Channel register	6	•	•	D5	D4	D3	D2	D1	D0	
Default register setting on POR or RESET	0x06	0	0	0	0	0	0	0	0	
Selected channel for current source is CH1-CH64 is [D5:D0] + 1		-	-	D5	D4	D3	D2	D1	D0	
Selected channel for current source is CH1				0	0	0	0	0	0	
Selected channel for current source is CH2				0	0	0	0	0	1	
Selected channel for current source is CH3	6	х		0 0 0 0 1					0	
and so on	0x06		Х			and :	so on			
Selected channel for current source is CH62				1	1	1	1	0	1	
Selected channel for current source is CH63				1	1	1	1	1	0	
Selected channel for current source is CH64				1	1	1	1	1	1	
Unused register bits. Values written are stored and read back		0/1	0/1	Х	Х	Х	Х	Х	Х	

20.8 Register address 7: Signal Conditioning Amplifier

The Signal Conditioning Amplifier register 7 (Table 27 below) controls a programmable gain amplifier and a pair of cascaded single pole low pass anti-alias filters. These stages sit in the signal chain between the instrumentation amplifier output and the ADC input.

The signal conditioning amplifier is enabled by setting Filter Off bit D6 = 0, in which case the amplifier's output (which is the final input to the ADC) appears at the ADC_IN pin. The signal at ADC_IN can be monitored by external circuitry if desired, such as by a second ADC for redundancy.

To use the ADC directly without any of the analog front end (multiplexer, current source, instrumentation amplifier, gain, filters), disable the signal conditioning amplifier by setting Filter Off bit D6 = 1. This configures the final amplifier's output to Hi-Z, allowing the ADC_IN pin to be driven by an external 0V to 2V input voltage.

The two 1-pole anti-alias filters are independent. They can be set to the same or different cutoff frequencies depending on the response desired.

Table 27: Register 7: Signal Conditioning Amplifier

Register Description	Register				Regist	er Dat	a		
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0
Signal Conditioning Amplifier register	7 0x07	-	Filter Off	_	Pole lency	1st Frequ	Pole Jency		lifier ain
Default register setting on POR or RESET	0.07	0	0	0	0	0	0	0	0
Signal conditioning amplifier gain is 0.4 A 5V signal at the multiplexer covers the 2V ADC input range		х	0	х	х	х	х	0	0
Signal conditioning amplifier gain is 2 A 1V signal at the multiplexer covers the 2V ADC input range		х	0	х	х	х	х	0	1
Signal conditioning amplifier gain is 10		Х	0	Х	Х	Х	Х	1	0
A 200mV signal at the multiplexer covers the 2V ADC input range		Х	0	Х	Х	Х	Х	1	1
1st single pole low pass anti-alias filter cutoff frequency is 400Hz		Х	0	Х	Х	0	0	Х	Х
1st single pole low pass anti-alias filter cutoff frequency is 2kHz		х	0	Х	Х	0	1	Х	Х
1st single pole low pass anti-alias filter cutoff frequency is 10kHz	7	Х	0	Х	Х	1	0	Х	Х
Factory test setting. Do not use	0x07	Х	0	Х	Х	1	1	Х	Х
2nd single pole low pass anti-alias filter cutoff frequency is 400Hz	OXO1	Х	0	0	0	Х	Х	Х	Х
2nd single pole low pass anti-alias filter cutoff frequency is 2kHz		Х	0	0	1	Х	Х	Х	Х
2nd single pole low pass anti-alias filter cutoff frequency is 10kHz		Х	0	1	0	Х	Х	Х	Х
Factory test setting. Do not use		Х	0	1	1	Х	Х	Х	Х
Analog front end is enabled and drives the ADC_IN pin as an output with the final signal that is available to be acquired by the internal ADC		х	0	х	х	х	х	х	х
Analog front end is disabled. The ADC_IN pin is an input. Apply an external 0V to 2V input voltage at the ADC_IN pin for ADC acquisition		х	1	х	х	х	х	х	х
Unused register bit. Value written is stored and read back		0/1	х	Х	Х	Х	Х	Х	Х

20.9 Register address 8: ADC Control

The ADC Control register 8 (Table 28 on page 50) initiates a single ADC conversion or configures auto-conversion, and allows conversion status to be monitored. Note that the Data Ready bit D3 is simply the inverse of the Busy bit D2.

The ADC Control register 8 comprises:

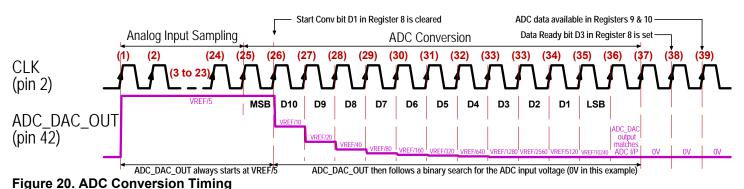

- Four latched bits D7 to D4 that are written by the user to configure single- or auto-conversion,
- Two status bits D3 and D2 that change with timing of the ADC's state machine, and
- The Start Conv bit D1 which operates as both a user command to start an ADC conversion on write, and a status bit controlled by the ADC's state machine on read

Table 28:	Register	8: ADC (Control
-----------	----------	----------	---------

Register Description	Register								
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0
ADC Control register	8 0x08		o San e [S2		Auto Conv	Data Ready	Busy	Start Conv	0
Default register setting on POR or RESET	UXUU	0	0	0	0	0	0	0	0
Leave this bit cleared to 0 to enable the gain and filter stages		Х	Х	Х	Х	Х	Х	Х	0
Start a single-shot ADC conversion		Х	Х	Х	0	Х	Х	1	0
Read status: the ADC is performing a single-shot conversion						0	1		
Read status: the ADC is not performing a conversion. The most recent conversion result is available in the ADC Result MSB and LSB registers 9 and 10 (Table 29 on page 52)		х	х	х	0	1	0	х	0
Read status: the ADC has performing a continuous conversion		Auto Sample 0				1			
Read status: the ADC has finished a continuous conversion and is waiting to start another conversion		Rate			1	0	Х	0	
Stop ADC auto-conversions at the end of the current conversion	8 0x08	Х	Х	Х	0	Х	Х	0	0
Start ADC auto-conversions at sample rate set by [S2:S0]	UXUO	S	et rat	e					
ADC sample rate = CLK / 40, so 12500 conversions/s at CLK = 500kHz		0	0	0					
ADC sample rate = CLK / 95, so 5263 conversions/s at CLK = 500kHz		0	0	1					
ADC sample rate = CLK / 205, so 2439 conversions/s at CLK = 500kHz		0	1	0					
ADC sample rate = CLK / 425, so 1176 conversions/s at CLK = 500kHz		0	1	1	1	Х	х	0	0
ADC sample rate = CLK / 865, so 578 conversions/s at CLK = 500kHz		1	0	0					
ADC sample rate = CLK / 1745, so 286 conversions/s at CLK = 500kHz		1	0	1					
ADC sample rate = CLK / 3505, so 142 conversions/s at CLK = 500kHz		1	1	0					
ADC sample rate = CLK / 7025, so 71 conversions/s at CLK = 500kHz		1	1	1					

The ADC's state machine timing is shown in Figure 20 below. A conversion is initiated by writing ADC Control register 8 setting either the Start Conv bit D1=1 for a single conversion, or the Auto Conv bit D4=1 for continuous conversions. The conversion starts on the subsequent rising edge of CLK.

The ADC_DAC_OUT pin is the output of the ADC's internal SAR DAC. This pin should not be loaded in production (just fitted with R_{ADC DAC OUT} per Table 3 on page 19), but provides a useful output for debugging ADC operation.

The ADC samples the input for 25 CLK periods, and then converts the sampled value for the next 12 CLK periods. The Data Ready bit is set by the rising edge of the 38th CLK, and the ADC result is valid in the ADC Result MSB and LSB registers 9 and 10 (Table 29 on page 52) after the 39th CLK rising edge. Until the 39th CLK rising edge, ADC Result MSB and LSB registers 9 and 10 retain the result of the previous acquisition.

Some notes to consider when planning acquisition timing:

- The ADC's state machine operates from the CLK pin (125kHz to 500kHz). The lower limit of 125kHz is not a hard limit, but an issue of increasing INL due to leakage in the sample/hold capacitor. See Table 3 on page 19 for details. ADC analog performance (offset and gain error, INL, DNL) is guaranteed in the Electrical Characteristics table at 500kHz
- CLK is typically operated continuously, but it may be halted in either low or high state between conversions

- At the earliest, halt CLK after its 39th rising edge (leaving CLK high) or subsequent falling edge (leaving CLK low)
 in the case of a single conversion
- ADC Control register 8 can be written with CLK halted, and CLK started when desired
 - After writing ADC Control register 8 with a Start Conv or Auto Conv command, a read of ADC Control register 8
 before the first subsequent rising edge of CLK will cause the Start Conv command or Auto Conv to be cancelled
- The rising edge of the 25th CLK is the instant that the sample/hold aperture closes and the analog input is stored
 - Start Conv bit D1 in ADC Control register 8 is cleared by the 26th CLK rising edge
 - The input multiplexor and current source can be switched to another input any time after the 25th CLK rising edge without affecting the conversion underway. This allows 14 CLKs (28µs with a 500kHz CLK) settling time for the next ADC input selection
- For fastest sequential acquisitions, write ADC Control register 8 with a Start Conv command during the 39th CLK
 period. The current ADC result will be available for the first 38 CLK periods of this new conversion, and so can read
 from ADC Result MSB and LSB resisters 9 and 10 after starting the new conversion
- The ADC state machine is reset by the Power On Enable block (Section 14.1 on page 21) on power-up. It is not, however, reset by either the RESET pin or via the Reset register 0. If the LX7720 is reset this way after power up, any ADC conversion underway will continue through completion. If the external ADC CLK source is halted by this reset event, be aware that up to 38 CLK periods will be required to complete this ADC conversion before a new one can be initiated.

20.9.1 SINGLE-SHOT ADC CONVERSION

To start a single conversion, set the Start Conv bit D1 by writing ADC Control register 8 with 0x02.

- In parallel interface mode, the Start Conv command is recognized by the ADC state machine at the falling edge of WE
- In SPI mode, the Start Conv command is recognized at the rising edge of SSA or SSB

The Start Conv command is latched into the ADC state machine by the next rising edge of CLK (Figure 21 below). If ADC Control register 8 is read before the next rising edge of CLK, then the Start Conv command is cancelled. If ADC activity is to be monitored by polling ADC Control register 8, be sure to either monitor CLK or wait at least a CLK period between starting a conversion and reading register 8.

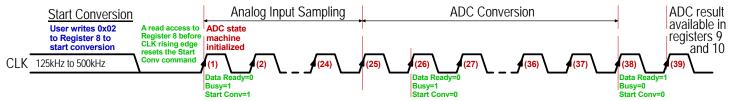


Figure 21. Single Conversion Timing

ADC Control register 8 bits D3 to D1 are not implemented as latched interface register bits, but represent real-time states within the ADC's state machine. The asynchronous nature of read and write access to ADC Control register 8 with respect to the ADC's state machine gives rise to small differences between behaviors when controlled by the parallel or a serial interface.

ADC Control register 8 Start Conv bit D1 is cleared the ADC's state machine on the 26th rising edge of CLK after writing ADC Control register 8 with 0x02. ADC Control register 8 Data Ready bit D3 and Busy bit D2 are toggled by the ADC's state machine on the 38th rising edge of CLK (Figure 21 above).

Since the status change of bits D3 to D1 are asynchronous to register reads through the parallel or serial interface, changes may occur mid-read. With the serial interface, this will appear as a parity error. A re-read will provide the correct status. With the parallel interface, the data bus and parity bit during a read $(\overline{OE} = 0)$ will show any bit changes transparently during the read.

20.9.2 CONTINUOUS (AUTO) ADC CONVERSIONS

To start continuous conversions, set the Auto Conv bit D4 by writing ADC Control register 8 with a value from 0x10 to 0xF0 according to the sample rate desired (Table 28 on page 50). The bits S2 to S0 in ADC Control register 8 select the sample rate. ADC continuous conversions are stored in the ADC Result MSB and LSB registers 9 and 10 until the next conversion is ready, and then overwritten. The sample rate follows Equation 6 on page 52. Table 28 on page 50 shows sample rates for a 500kHz CLK.

ADC sample rate =
$$\frac{\text{CLK}}{40 + \left(55 \times \left[2^{\text{[S2 : S0]}} - 1\right]\right)} \text{ ADC conversions per second}$$

Equation 6. ADC Auto Sample Rate

20.10 Register addresses 9 and 10: ADC Result MSB and LSB

The ADC result MSB register 9 contains the 8 MSBs [ADC _D11: ADC _D4], and the ADC result LSB register 10 contains the 4 LSBs [ADC _D3: ADC _D0] for the last completed 12-bit ADC conversion [ADC _D11: ADC _D0] (Table 29 below). The 4 unused bits in the ADC result LSB register always return 0s. The ADC characteristics follow the expressions in Equation 7 below:

$$Voltage at ADC_IN = \frac{[ADC_D11 : ADC_D0] \times 2}{4096} V \qquad \text{or } [ADC_D11 : ADC_D0] = (Voltage at ADC_IN) \times 2048$$

Equation 7. ADC Characteristics

Table 29: Register 9 and 10: ADC Result MSB and LSB

Register Description	Register				Registe	r Data				
Register Description	Address	D7	D6	D6 D5		D3	D2	D1	D0	
ADC Result MSB register	9	ADC _D11	ADC _D10	ADC _D9	ADC _D8	ADC _D7	ADC _D6	ADC _D5	ADC _D4	
Default register setting on POR or RESET	0x09	0	0	0	0	0	0	0	0	
ADC Result LSB register	10	0	0	0	0	ADC _D3	ADC _D2	ADC _D1	ADC _D0	
Default register setting on POR or RESET	0x0A	0	0	0	0	0	0	0	0	

20.11 Register address 11: 8-Bit Bank Bi-Level Comparators Threshold DAC

The 8-Bit Bank Bi-Level Comparators Threshold DAC register sets the 8-bit DAC setting the rising-voltage threshold for the inverting inputs to the 8 bank bi-level comparators (Table 30 below, Table 31 on page 53, Figure 6 on page 24). The bank bi-level comparators are 8 comparators whose non-inverting inputs connect to a selection of the internal multiplexer outputs, and whose outputs are available in a register. The comparators have built in hysteresis, making the falling-voltage threshold for the inverting inputs typically 112mV lower than the voltage set by this DAC.

Table 30: Register 11: 8-Bit Bank Bi-Level Comparators Threshold DAC

Register Description	•	Register				Regist	er Data			
Register Description		Address	D7	D6	D5	D4	D3	D2	D1	D0
8-Bit Bank Bi-Level Comparators Thresh	old DAC register	11	BI _D7	BI_D6	BI _D5	BI _D4	BI _D3	BI _D2	BI _D1	BI_D0
Default register setting on POR	or RESET	0x0B	0	0	0	0	0	0	0	0
0x00 (0): DAC output is typically 0V	DAC output		0	0	0	0	0	0	0	0
0x01 (1): DAC output is typically 0.02V	precision is not		0	0	0	0	0	0	0	1
up to	guaranteed in the					up	to			
0x12 (18): DAC output is typically 0.35V	range 0x00 to 0x13		0	0	0	1	0	0	1	0
0x13 (19): DAC output is typically 0.37V	0000 10 00 13		0	0	0	1	0	0	1	1
0x14 (20): DAC output is 0.392V typical (0.359V - 0.426V)			0	0	0	1	0	1	0	0
0x15 (21): DAC output is 0.412V typical (0.5	378V - 0.446V)		0	0	0	1	0	1	0	1
0x16 (22): DAC output is 0.431V typical (0.3	398V - 0.465V)	11	0	0	0	1	0	1	1	0
up to		0x0B				up	to			
0xEE (238): DAC output is 4.667V typical (4	4.591V - 4.743V)		1	1	1	0	1	1	1	0
0xEF (239): DAC output is 4.686V typical (4			1	1	1	0	1	1	1	1
0xF0 (240): DAC output is 4.706V typical (4	1.629V - 4.783V)		1	1	1	1	0	0	0	0
0xF1 (241): DAC output is typically 4.73V	DAC output		1	1	1	1	0	0	0	1
0xF2 (242): DAC output is typically 4.75V	precision is not		1	1	1	1	0	0	1	0
up to	guaranteed in the					up	to			
0xFE (254): DAC output is typically 4.98V	range		1	1	1	1	1	1	1	0
0xFF (255): DAC output is typically 5V	0xF1-0xFF		1	1	1	1	1	1	1	1

The bank bi-level comparator non-inverting inputs are configured by register 12 (Table 32 on page 54), and the outputs are available in register 13 (Table 33 on page 55).

There is also an independent set of 8 bi-level comparators called the BLI/BLO comparators whose non-inverting inputs connect to the 8 pins BLI1 to BLI8, and whose outputs connect to the 8 pins BLO1 to BLO8. See section 15.2 on page 22.

Table 31. 8-Bit Bank Bi-Level Comparators Threshold DAC Typical Outputs

				- C C P	u. u.to. o										
Code	DAC Output	Code	DAC Output	Code	DAC Output	Code	DAC Output	Code	DAC Output	Code	DAC Output	Code	DAC Output	Code	DAC Output
0x00	0.00V	0x20	0.63V	0x40	1.25V	0x60	1.88V	0x80	2.51V	0xA0	3.14V	0xC0	3.76V	0xE0	4.39V
0x01	0.02V	0x21	0.65V	0x41	1.27V	0x61	1.90V	0x81	2.53V	0xA1	3.16V	0xC1	3.78V	0xE1	4.41V
0x02	0.04V	0x22	0.67V	0x42	1.29V	0x62	1.92V	0x82	2.55V	0xA2	3.18V	0xC2	3.80V	0xE2	4.43V
0x03	0.06V	0x23	0.69V	0x43	1.31V	0x63	1.94V	0x83	2.57V	0xA3	3.20V	0xC3	3.82V	0xE3	4.45V
0x04	V80.0	0x24	0.71V	0x44	1.33V	0x64	1.96V	0x84	2.59V	0xA4	3.22V	0xC4	3.84V	0xE4	4.47V
0x05	0.10V	0x25	0.73V	0x45	1.35V	0x65	1.98V	0x85	2.61V	0xA5	3.24V	0xC5	3.86V	0xE5	4.49V
0x06	0.12V	0x26	0.75V	0x46	1.37V	0x66	2.00V	0x86	2.63V	0xA6	3.25V	0xC6	3.88V	0xE6	4.51V
0x07	0.14V	0x27	0.76V	0x47	1.39V	0x67	2.02V	0x87	2.65V	0xA7	3.27V	0xC7	3.90V	0xE7	4.53V
80x0	0.16V	0x28	0.78V	0x48	1.41V	0x68	2.04V	0x88	2.67V	0xA8	3.29V	0xC8	3.92V	0xE8	4.55V
0x09	0.18V	0x29	0.80V	0x49	1.43V	0x69	2.06V	0x89	2.69V	0xA9	3.31V	0xC9	3.94V	0xE9	4.57V
0x0A	0.20V	0x2A	0.82V	0x4A	1.45V	0x6A	2.08V	A8x0	2.71V	0xAA	3.33V	0xCA	3.96V	0xEA	4.59V
0x0B	0.22V	0x2B	0.84V	0x4B	1.47V	0x6B	2.10V	0x8B	2.73V	0xAB	3.35V	0xCB	3.98V	0xEB	4.61V
0x0C	0.24V	0x2C	0.86V	0x4C	1.49V	0x6C	2.12V	0x8C	2.75V	0xAC	3.37V	0xCC	4.00V	0xEC	4.63V
0x0D	0.25V	0x2D	0.88V	0x4D	1.51V	0x6D	2.14V	0x8D	2.76V	0xAD	3.39V	0xCD	4.02V	0xED	4.65V
0x0E	0.27V	0x2E	0.90V	0x4E	1.53V	0x6E	2.16V	0x8E	2.78V	0xAE	3.41V	0xCE	4.04V	0xEE	4.67V
0x0F	0.29V	0x2F	0.92V	0x4F	1.55V	0x6F	2.18V	0x8F	2.80V	0xAF	3.43V	0xCF	4.06V	0xEF	4.69V
0x10	0.31V	0x30	0.94V	0x50	1.57V	0x70	2.20V	0x90	2.82V	0xB0	3.45V	0xD0	4.08V	0xF0	4.71V
0x11	0.33V	0x31	0.96V	0x51	1.59V	0x71	2.22V	0x91	2.84V	0xB1	3.47V	0xD1	4.10V	0xF1	4.73V
0x12	0.35V	0x32	0.98V	0x52	1.61V	0x72	2.24V	0x92	2.86V	0xB2	3.49V	0xD2	4.12V	0xF2	4.75V
0x13	0.37V	0x33	1.00V	0x53	1.63V	0x73	2.25V	0x93	2.88V	0xB3	3.51V	0xD3	4.14V	0xF3	4.76V
0x14	0.39V	0x34	1.02V	0x54	1.65V	0x74	2.27V	0x94	2.90V	0xB4	3.53V	0xD4	4.16V	0xF4	4.78V
0x15	0.41V	0x35	1.04V	0x55	1.67V	0x75	2.29V	0x95	2.92V	0xB5	3.55V	0xD5	4.18V	0xF5	4.80V
0x16	0.43V	0x36	1.06V	0x56	1.69V	0x76	2.31V	0x96	2.94V	0xB6	3.57V	0xD6	4.20V	0xF6	4.82V
0x17	0.45V	0x37	1.08V	0x57	1.71V	0x77	2.33V	0x97	2.96V	0xB7	3.59V	0xD7	4.22V	0xF7	4.84V
0x18	0.47V	0x38	1.10V	0x58	1.73V	0x78	2.35V	0x98	2.98V	0xB8	3.61V	0xD8	4.24V	0xF8	4.86V
0x19	0.49V	0x39	1.12V	0x59	1.75V	0x79	2.37V	0x99	3.00V	0xB9	3.63V	0xD9	4.25V	0xF9	4.88V
0x1A	0.51V	0x3A	1.14V	0x5A	1.76V	0x7A	2.39V	0x9A	3.02V	0xBA	3.65V	0xDA	4.27V	0xFA	4.90V
0x1B	0.53V	0x3B	1.16V	0x5B	1.78V	0x7B	2.41V	0x9B	3.04V	0xBB	3.67V	0xDB	4.29V	0xFB	4.92V
0x1C	0.55V	0x3C	1.18V	0x5C	1.80V	0x7C	2.43V	0x9C	3.06V	0xBC	3.69V	0xDC	4.31V	0xFC	4.94V
0x1D	0.57V	0x3D	1.20V	0x5D	1.82V	0x7D	2.45V	0x9D	3.08V	0xBD	3.71V	0xDD	4.33V	0xFD	4.96V
0x1E	0.59V	0x3E	1.22V	0x5E	1.84V	0x7E	2.47V	0x9E	3.10V	0xBE	3.73V	0xDE	4.35V	0xFE	4.98V
0x1F	0.61V	0x3F	1.24V	0x5F	1.86V	0x7F	2.49V	0x9F	3.12V	0xBF	3.75V	0xDF	4.37V	0xFF	5.00V
	•						•		•						•

The DAC is implemented as a voltage output R-2R ladder. If the Bank bi-level comparators are not used, setting the DAC to 0x00 (which is the condition after a reset) saves a little power.

The DAC is specified for linearity over the code range 0x14 to 0xF0 (20 to 240), which corresponds to an DAC output voltage range of 0.4V to 4.7V. The DAC output voltage over this range follows the expression in Equation 8 below. This includes the $\pm 1\%$ full scale error, the ± 1 LSB INL, and the ± 10 mV offset error). The expression is also valid for values outside this code range, but the precision may be worse.

$$Bi-Level DAC Output = \frac{\left(\frac{5 \times 256}{255} \pm 1\%\right) \times \left(\{BL_D7 : BL_D0\} \pm 1\right)}{256} \pm 0.010 V$$

which simplifies to:

Bi-Level DAC Output =
$$\frac{\{BL_D7: BL_D0\} \pm 1}{51 \pm 1\%} \pm 0.010 \text{ V}$$

Equation 8. 8-Bit Bank Bi-Level Comparators Threshold DAC Transfer Characteristic

Design Example

Desired DAC voltage is 3V. Using Table 31 on page 53, the DAC [BL_D7:BL_D0] setting for 3.0V typical is 0x99, or 153. With that value, the tolerances can be calculated:

Bi-Level DAC Output (max) =
$$\frac{\{153\} + 1}{51 \times 0.99} + 0.010 \text{ V} = 3.06 \text{V}$$

Bi-Level DAC Output (min) = $\frac{\{153\} - 1}{51 \times 1.01} - 0.010 \text{ V} = 2.94 \text{V}$

20.12 Register address 12: Bank Bi-Level Comparators Input Selection

The Bank Bi-Level Comparators Input Selection register 12 selects which bank of 8 inputs are routed to the non-inverting inputs of the bank bi-level comparators, when En Sw bit D3 = 1. Figure 6 on page 24 is a block diagram of bank bi-level comparators operating with En Sw bit D3 = 1.

When En Sw bit D3 = 0, the bank bi-level comparators are connected to inputs controlled by Mux Channel Select registers 3 and 4 (Table 19 on page 41, Table 22 on page 44). See section 15.3.2 on page 25 for details how the comparators are connected to the inputs CH1 to CH64 in this mode.

The comparator inverting inputs are connected to a common threshold voltage set by an 8-bit DAC configured by register 11 (Table 30 on page 52). The bank bi-level comparator outputs are available in register 13 (Table 33 on page 55).

The Use BL-TH bit D7 selects the reference voltage (inverting input trip threshold) for the independent BLI/BLO bi-level comparators, whose non-inverting inputs connect to pins BLI1 to BLI8, and whose outputs connect to pins BLO1 to BLO8.

Table 32: Register 12: Bank Bi-Level Comparators Input Selection

Register Description	Register				Re	gister Da	ta		
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0
Bank Bi-Level Comparators Input Selection register	40	Use				Bi-Level	Mux Sv	vitch P	osition
Balik Bi-Level Colliparators illput Selection register	12 0x0C	BL_TH	_	-	-	En Sw	D2	D1	D0
Default register setting on POR or RESET	OXOG	0	0	0	0	0	0	0	0
Bank bi-level comparators input selection set by the Mux Channel Select registers 3 & 4 (Table 19 on page 41, Table 22 on page 44)		х	х	х	х	0	х	х	х
Analog multiplexer inputs CH1 - CH8 to the bank comparators		Х	х	Х	Х	1	0	0	0
Analog multiplexer inputs CH9 - CH16 to the bank comparators		Х	х	Х	Х	1	0	0	1
Analog multiplexer inputs CH17 - CH24 to the bank comparators		Х	х	Х	Х	1	0	1	0
Analog multiplexer inputs CH25 - CH32 to the bank comparators	40	Х	х	Х	Х	1	0	1	1
Analog multiplexer inputs CH33 - CH40 to the bank comparators	12 0x0C	Х	х	Х	Х	1	1	0	0
Analog multiplexer inputs CH41 - CH48 to the bank comparators	UXUC	Х	х	Х	Х	1	1	0	1
Analog multiplexer inputs CH49 - CH56 to the bank comparators		Х	х	Х	Х	1	1	1	0
Analog multiplexer inputs CH57 - CH64 to the bank comparators		Х	Х	Х	Х	1	1	1	1
Unused register bits. Values written are stored and read back		Х	0/1	0/1	0/1	Х	Х	Х	Х
BLI/BLO comparators use an internal 2.5V ±50mV reference		0	Х	Х	Х	Х	Х	Х	Х
BLI/BLO comparators use external reference on the BL_TH pin		1	Х	Х	Х	Х	х	Х	х

20.13 Register address 13: Bank Bi-Level Comparators Output Status

The Bank Bi-Level Comparators Output Status register 13 provides the outputs of the 8 bank bi-level comparators selected by the 4 LSBs {D3:D0} in register 12 (Table 32 above). A comparator output is high when its associated input is higher than the common threshold voltage set by an 8-bit DAC configured by register 11 (Table 30 on page 52).

Table 33: Register 13: Bank I	Bi-Level Comparators	Output Status

Register Description	Register										
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0		
Bank Bi-Level Comparators Output Status register	13	13 Selected Bank Bi-Level Comparators O							utputs		
Default register setting on POR or RESET	0x0D	0	0	0	0	0	0	0	0		
Register 12 = 0xX0 to 0xX7. Bank comparators input selection set by the Mux Channel Select registers 3 & 4		See Table 19 on page 41, Table 22 on page 44									
Register 12 = 0xX8: Bank comparators cover CH1 - CH8		CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1		
Register 12 = 0xX9: Bank comparators cover CH9 - CH16		CH16	CH15	CH14	CH13	CH12	CH11	CH10	CH9		
Register 12 = 0xXA: Bank comparators cover CH17 - CH24	13	CH24	CH23	CH22	CH21	CH20	CH19	CH18	CH17		
Register 12 = 0xXB: Bank comparators cover CH25 - CH32	0x0D	CH32	CH31	CH30	CH29	CH28	CH27	CH26	CH25		
Register 12 = 0xXC: Bank comparators cover CH33 - CH40		CH40	CH39	CH38	CH37	CH36	CH53	CH34	CH33		
Register 12 = 0xXD: Bank comparators cover CH41 - CH48		CH48	CH47	CH46	CH45	CH44	CH43	CH42	CH41		
Register 12 = 0xXE: Bank comparators cover CH49 - CH56		CH56	CH55	CH54	CH53	CH52	CH51	CH50	CH49		
Register 12 = 0xXF: Bank comparators cover CH57 - CH64		CH64	CH63	CH62	CH61	CH60	CH59	CH58	CH57		

20.14 Register address 14 and 15: 10-Bit DAC MSB and LSB

The 10-bit DAC MSB register 14 contains the eight MSBs, and the 10-Bit DAC LSB register 15 contains the two LSBs for the 10-bit current DAC.

To update the DAC, the DAC LSB register 15 is written first. DAC LSB register 15 only stores the two LSBs, [D1:D0]. The remaining 6 bits [D7:D2] are ignored, and read back from the register as 0s. When the DAC MSB register 14 is written, the two LSBs in the DAC LSB register 15 are combined with the eight bits just stored in the DAC MSB register 14. This 10-bit word is used immediately to update the 10-bit DAC. The structure is shown in Figure 22 below.

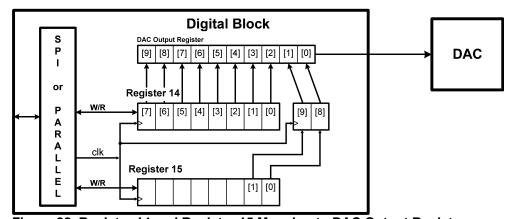


Figure 22. Register 14 and Register 15 Mapping to DAC Output Register

The 10-bit DAC is assigned to one of three modes of operation:

- Powered down, by clearing Function Enable register 1 bit D2 = 0 (Table 17 on page 39)
- Assigned as a general-purpose complementary current output 10-bit DAC, in the range 0 to 2mA routed to the DAC_P output pin and the DAC_N output pin
- Assigned as the internal multiplexer 5-bit current source, in the range 0 to 300µA

To use the 10-bit DAC as a general purpose DAC:

- Clear the Current Mux Level register 5 Use DAC bit D7 = 0 (Table 25 on page 47). This selects the 4-bit IDAC current source as the multiplexer current source, and frees the 10-bit DAC
- The code range 0 to 1023 in the 10-bit DAC registers 14 and 15 (Table 34 on page 56) sources an increasing output current from 0 to 2mA at the DAC_P output pin, and a decreasing output current from 2 to 0mA at the DAC_N output pin

 Terminate both the DAC_P output pin and the DAC_N output pin with resistors ≤1.5kΩ to AGND to develop nominal output voltages ≤3V maximum at code 0x3FF and 0x000 respectively

From the Electrical Characteristics table, the DAC_P and DAC_N currents for the ceramic packaged versions (including full scale current tolerance of 0.06mA and DAC INL of 5 LSBs) follow Equation 9 below, where R_{IREF1} = 20k Ω ±1% resistor from the IREF1 pin to AGND. The plastic packaged version has a looser full scale current tolerance of 0.07mA, and the toleranced transfer characteristic is given in Equation 10 below.

$$DAC_P \ = \ \frac{\left(2 \ \pm \ 0.06\right) \times \left\{DAC_D9 \ : \ DAC_D0\right\}}{1024} \ \pm \ \frac{5 \times 2.06}{1024} \ mA \ = \ \frac{\left(2 \ \pm \ 0.06\right) \times \left\{DAC_D9 \ : \ DAC_D0\right\}}{1024} \ \pm \ 0.010 \ mA$$

$$DAC_N = (2 \pm 0.06) \times \left(1 - \frac{\{DAC_D9 : DAC_D0\}}{1024}\right) \pm 0.010 \text{ mA}$$

Equation 9. 10-bit DAC Transfer Characteristic for Output Pins DAC_P and DAC_N (Ceramic Package)

$$DAC_P = \frac{(2 \pm 0.07) \times \{DAC_D9 : DAC_D0\}}{1024} \pm \frac{5 \times 2.07}{1024} \text{ mA} = \frac{(2 \pm 0.07) \times \{DAC_D9 : DAC_D0\}}{1024} \pm 0.01011 \text{ mA}$$

$$DAC_N = (2 \pm 0.07) \times \left(1 - \frac{\{DAC_D9 : DAC_D0\}}{1024}\right) \pm 0.01011 \, mA$$

Equation 10. 10-bit DAC Transfer Characteristic for Output Pins DAC_P and DAC_N (Plastic Package)

Example (Ceramic Package): [DAC_D9:DAC_D0] = b'11000000 00' = 768

DAC _ P =
$$\frac{(2 \pm 0.06) \times \{768\}}{1024} \pm 0.010 \text{ mA} = 1.5\text{mA} \pm 0.055\text{mA} = 1.445\text{mA} \text{ to } 1.555\text{mA}$$

DAC _ N = $(2 \pm 0.06) \times \left(1 - \frac{\{768\}}{1024}\right) \pm 0.010 \text{ mA} = 0.5\text{mA} \pm 0.025\text{mA} = 0.475\text{mA} \text{ to } 0.525\text{mA}$

Table 34: Register addresses 14 and 15: 10-Bit DAC (driving the DAC P pin and the DAC N pin)

Register Description	Register					er Data	· ·				
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0		
10-Bit DAC MSB register	14	DAC _D9	DAC _D8	DAC _D7	DAC _D6	DAC _D5	DAC _D4	DAC _D3	DAC _D2		
Default register setting on POR or RESET	0x0E	0	0	0	0	0	0	0	0		
10-Bit DAC LSB register	15	0	0	0	0	0	0	DAC _D1	DAC _D0		
Default register setting on POR or RESET	0x0F	0	0	0	0	0	0	0	0		
DAC _ P = $\frac{2 \times \{DAC_D9 : DAC_D0\}}{1024}$ mA DAC _ N = $2 \times \left(1 - \frac{\{DAC_D9 : DAC_D0\}}{1024}\right)$ mA	14 0x0E	Current Mux Level register 5 Use DAC bit D7 = 0 (Table 25 on page 47), making the DAC available with complementary outputs DAC_P and DAC_N. Terminate the DAC_P pin and the DAC_N pin each with a resistor $\leq 1.5 \text{k}\Omega$ to AGND to develop complementary nominal output voltages $\leq 3\text{V}$									
DAC_P = 0mA, DAC_N = 2mA	and	Reg.14 =	0x00. Re	g.15 = 0x0	00. {DAC_	D9 : DAC	_D0} = b'0	0000000	00' = 0		
DAC_P = 0.002mA, DAC_N = 1.998mA	and	Reg.14 =	0x00. Re	g.15 = 0x0	01. {DAC_	D9 : DAC	_D0} = b'0	0000000	01' = 1		
up to	15					to					
DAC_P = 1.996mA, DAC_N = 0.004mA	0x0F	Reg.14 = 1022	0xFF. Re	g.15 = 0x	02. {DAC_	_D9 : DAC	C_D0} = b'	11111111	10' =		
DAC_P = 1.998mA, DAC_N = 0.002mA		Reg.14 = 1023	0xFF. Re	g.15 = 0x	03. {DAC_	_D9 : DAC	;_D0} = b'	111111111	11' =		

To use the 10-bit DAC for internal use as a 5-bit current source for the analog input multiplexer:

- Set the Current Mux Level register 5 Use DAC bit D7 = 1 (Table 25 on page 47). This de-selects the 4-bit IDAC current source as the multiplexer current source, and allocates the 10-bit DAC instead
- The code range 0 to 31 in the 10-bit DAC registers 14 and 15 (Table 35 on page 57) sources an output current from 0 to 300µA to the analog input multiplexer
- Leave the DAC_P pin open, and terminate the DAC_N pin to either GND or AGND

From the Electrical Characteristics table, the multiplexer source current (including full scale current tolerance of $10\mu A$ and DAC INL of $2\mu A$) follows Equation 11 on page 57, where R_{IREF1} = $20k\Omega$ ±1% resistor from the IREF1 pin to AGND:

$$\text{Mux_Current} = \left(\left\{ \text{DAC_D9} : \text{DAC_D0} \right\} \times \frac{300 \pm 10}{31} \right) \pm 2 \, \mu \text{A (ceramic) or } \pm 2.5 \, \mu \text{A (plastic)}$$

Equation 11. 10-bit DAC Transfer Characteristic For 5-bit Current Source

Example 1: [DAC_D9:DAC_D0] = b'00000010 00' = 8 (ceramic packaged part) Mux_Current = $\left(8 \times \frac{300 \pm 10}{31}\right) \pm 2 \,\mu\text{A} = 77.42 \,\mu\text{A} \pm 4.58 \,\mu\text{A}$

Example 2: [DAC_D9:DAC_D0] = b'00000110 00' = 24 (plastic packaged part) $Mux_Current = \left(\left\{ 24 \right\} \times \frac{300 \pm 10}{31} \right) \pm 2.5 \, \mu A = 232.26 \, \mu A \pm 10.24 \, \mu A$

Table 35: Register addresses 14 and 15: 10-Bit DAC (as internal multiplexer current source)

Parietar Description	Register												
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0				
10-Bit DAC MSB register	14	DAC _D9	DAC _D8	DAC _D7	DAC _D6	DAC _D5	DAC _D4	DAC _D3	DAC _D2				
Default register setting on POR or RESET	0x0E	0	0	0	0	0	0	0	0				
10-Bit DAC LSB register		0	0	0	0	0	0	DAC _D1	DAC _D0				
Default register setting on POR or RESET		0	0	0	0	0	0	0	0				
Only use {DAC_D9 : DAC_D0} codes in the range b'00000000 00' to b'00000111 11' (0 to 31) Mux Current = 0µA		assigning analog in DAC_N p	the DAC put multipoin to eithe	register 5 _P output lexer. Lea er GND or g.15 = 0x0	to internal ve the DA AGND	use as th	ne current open, and	source for connect th	the ne				
Mux Current is set to 9.7µA ±2.3µA (±24%)				g.15 = 0x0									
Mux_Current is set to 19.4µA ±2.6µA (±13.7%)		_		$g.15 = 0x^{1}$									
Mux_Current is set to 29μA ±3μA (±10.2%)				$g.15 = 0x^{1}$	• -								
Mux Current is set to 38.7µA ±3.3µA (±8.5%)		·		g.15 = 0x(
Mux_Current is set to 48.4μA ±3.6μA (±7.5%)				g.15 = 0x0									
Mux Current is set to 58.1μA ±3.9μA (±6.8%)				g.15 = 0x1									
Mux_Current is set to 67.7μA ±4.3μA (±6.3%)		Reg.14 =	0x01. Re	g.15 = 0x1	11. {DAC_	D9 : DAC	 _D0} = b'(0000001	11' = 7				
Mux_Current is set to 77.4μA ±4.6μA (±5.9%)				g.15 = 0x0									
Mux_Current is set to 87.1μA ±4.9μA (±5.6%)		Reg.14 = 0x02. Reg.15 = 0x01. {DAC_D9 : DAC_D0} = b'00000010 01' = 9											
Mux_Current is set to 96.8μA ±5.2μA (±5.4%)	14												
Mux_Current is set to 106.5µA ±5.5µA (±5.2%)	0x0E	Reg.14 =	0x02. Re	g.15 = 0x1	11. {DAC_	D9 : DAC	_D0} = b'(00000010	11' = 11				
Mux_Current is set to 116.1µA ±5.9µA (±5.1%)		Reg.14 =	0x03. Re	g.15 = 0x0	00. {DAC_	D9 : DAC	_D0} = b'(00000011	00' = 12				
Mux_Current is set to 125.8µA ±6.2µA (±4.9%)	and	Reg.14 =	0x03. Re	g.15 = 0x0)1. {DAC_	D9 : DAC	D0 = b'(00000011	01' = 13				
Mux_Current is set to 135.5μA ±6.5μA (±4.8%)	15	Reg.14 =	0x03. Re	g.15 = 0x1	10. {DAC_	D9 : DAC	_D0} = b'(00000011	10' = 14				
Mux_Current is set to 145.2μA ±6.8μA (±4.7%)	0x0F	Reg.14 =	0x03. Re	g.15 = 0x1	I1. {DAC_	D9 : DAC	D0 = b'(00000011	11' = 15				
Mux_Current is set to 154.8μA ±7.2μA (±4.6%)		•		g.15 = 0x0									
Mux_Current is set to 164.5μA ±7.5μA (±4.5%)				g.15 = 0x0									
Mux_Current is set to 174.2μA ±7.8μA (±4.5%)		·		$g.15 = 0x^{2}$									
Mux_Current is set to 183.9μA ±8.1μA (±4.4%)		•		g.15 = 0x1									
Mux_Current is set to 193.5μA ±8.5μA (±4.4%)				g.15 = 0x0									
Mux_Current is set to 203.2μA ±8.8μA (±4.3%)		·		g.15 = 0x0									
Mux_Current is set to 212.9μA ±9.1μA (±4.3%)		•		$g.15 = 0x^{2}$									
Mux_Current is set to 222.6μA ±9.4μA (±4.2%)				g.15 = 0x1	• -								
Mux_Current is set to 232.3μA ±9.7μA (±4.2%)		·		g.15 = 0x0									
Mux_Current is set to 241.9μA ±10.1μA (±4.2%)				g.15 = 0x0									
Mux_Current is set to 251.6μA ±10.4μA (±4.1%)		-		$g.15 = 0x^{1}$									
Mux_Current is set to 261.3μA ±10.7μA (±4.1%)				$g.15 = 0x^{1}$									
Mux_Current is set to 271μA ±11μA (±4.1%)				g.15 = 0x0									
Mux_Current is set to 280.6μA ±11.4μA (±4%)				g.15 = 0x0									
Mux_Current is set to 290.3μA ±11.7μA (±4%)				g.15 = 0x1									
Mux_Current is set to 300μA ±10μA (±3.3%)		Reg.14 =	0x07. Re	$g.15 = 0x^{2}$	11. {DAC_	D9 : DAC	_D0} = b'(00000111	11' = 31				

20.15 Register address 16: Calibration

The Calibration register 16 is used at the factory for calibration of the amplifier offset and testing of the multiplexer and programmable current sources. It contains 4 functions, only one of which may be active at a time (Table 36 below and Table 37 on page 59).

These functions affect the inputs to the instrumentation amplifier, the multiplexer current source, and over-ride the settings of the Non-Inverting Mux Channel Select register 3 (Table 19 on page 41) and/or the Inverting Mux Channel Select register 4 (Table 22 on page 44).

The I GND function causes the inverting input of the instrumentation amplifier to be connected to AGND. This provides a convenient ground connection for local single ended inputs without using the SE_RTN pin. If I GND is selected by writing 0x02 to the Calibration register 16, the Use SE_RTN bit in the Inverting Mux Channel Select register 4 is ignored.

The other 3 functions are available for periodic circuit testing by the system controller if required.

The setting in the Calibration register 16 is ignored (over-ridden) if one of more of the 4-bits [D6:D3] in the Power Status register 2 is set. These settings monitor the VREF, +5V, VEE, and VCC rails. See Table 18 on page 40.

Table 36. Calibration Register Function Details

Function Selected	Instrumentation Amplifier Modification	Function Behavior	Register Over-Ridden
I GND	Non-inverting input connected to multiplexer as normal Inverting input tied to AGND instead of multiplexer	This option connects the instrumentation amplifier's inverting input to GND internally. This allows the acquisition of a single-ended signal using only one CH input. The inverting input can alternatively be connected to an external GND via the SE_RTN pin using the Inverting Mux Channel Select register (Table 22 on page 44). See Figure 10 on page 29 for a connection example	Inverting Mux Channel Select register 4 (Table 22 on page 44)
NP Cont Check	Non-inverting input tied to VREF/2 instead of multiplexer Inverting input connected to the multiplexer current source (set as normal) as well as the multiplexer See Figure 23 on page 59	Use this setting to perform a continuity check of the instrumentation amplifier's inverting input multiplexer. An open multiplexer path (including input source) is detected by the current source pulling up the inverting input higher than VREF/2 causing the amplifier output to go low. If an external sensor is properly attached, the voltage read by the ADC is the difference of VREF/2 and the product of the current source and the impedance of the sensor plus the impedance of the two multiplexer switches encountered in the current path.	Non-Inverting Mux Channel Select register 3 (Table 19 on page 41) Current Mux Channel Select register 6 (Table 26 on page 48)
Cont Check	Non-inverting input connected to the multiplexer current source (set as normal) as well as the multiplexer Inverting input is connected to the multiplexer as normal See Figure 24 on page 60	Use this setting to perform a continuity check of the instrumentation amplifier's non-inverting input multiplexer. An open multiplexer path (including input source) is detected by the current source pulling up the non-inverting input causing the amplifier output to go high. A working multiplexer path allows the total resistance of the two multiplexers in series with the input source to be measured as a voltage drop due to the current source. If the inverting input is selected as the same channel input as the non-inverting input, then the resistance of the non-inverting input multiplexer can be measured	Current Mux Channel Select register 6 (Table 26 on page 48)
IA Short	Non-inverting input connected to multiplexer as normal Inverting input is tied to the non-inverting input	This option allows the instrumentation amplifier's offset and common mode errors to be measured	Inverting Mux Channel Select register 4 (Table 22 on page 44)

Table 37: Register 16: Calibration

		Register									
		Address	D7	D6	D5	D4	D3	D2	D1	D0	
Power Status register		16 0x10	IA Short	-	-	Cont Check	NP Cont Check	-	I GND	ISET	
Default register sett	ng on POR or RESET	UXIU	0	0	0	0	0	0	0	0	
Factory test setting. Always write this register with ISET = 0			Х	Х	Х	Х	Х	Х	Х	0	
Unused register bits. Values written are stored and read back			Х	0/1	0/1	Х	Х	0/1	Х	0	
Instrumentation amplifier's non-inverting input voltage is modified as follows: Instrumentation amplifier's inverting input voltage is modified as follows:		16									
-	-	0x10	0	Х	Х	0	0	Х	0	0	
- Tied to non-inverting input			1	Х	Х	Х	Х	Х	Х	0	
- Tied to AGND			0	Х	Х	Х	Х	Х	1	0	
Tied to VREF	Current source applied		0	Х	Х	Х	1	Х	0	0	
Current source applied	-		0	Х	Х	1	0	Х	0	0	

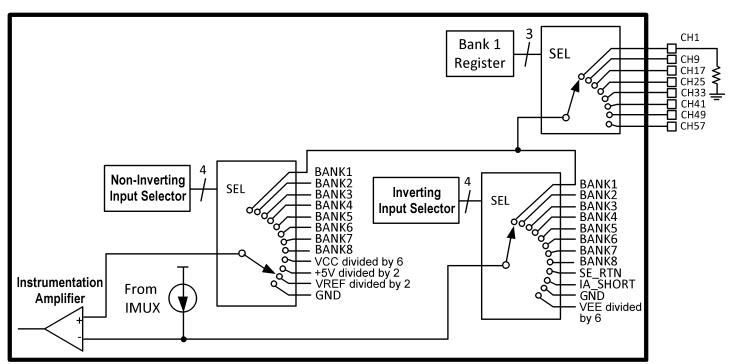


Figure 23. Inverting Multiplexer Terminal Continuity Check Connections (Calibration register 16 = 0x08)

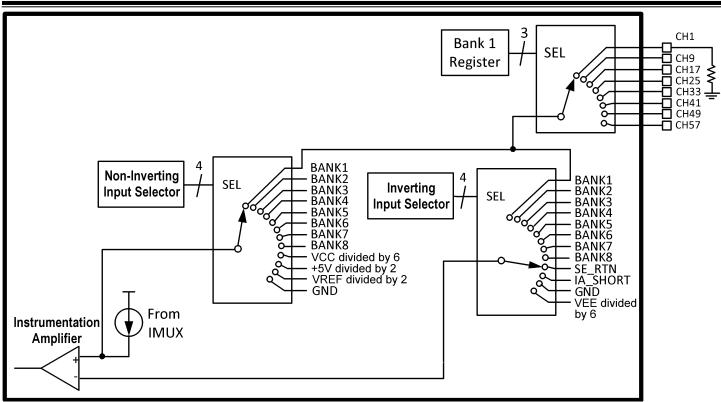


Figure 24. Continuity Check Connections (Calibration register 16 = 0x10)

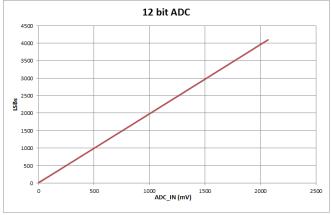
20.16 Register address 17: OTP

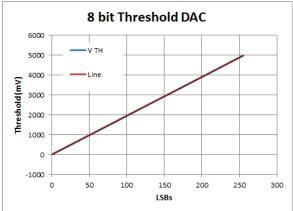
The OTP register enables the user to temporarily over-ride the factory programmed OTP trim settings, and adjust the values as desired. The default values can be restored back from OTP via the same register. The default values are also restored from OTP when a reset is performed by either toggling the RESET pin or via the Reset register 0 (Table 16 on page 38).

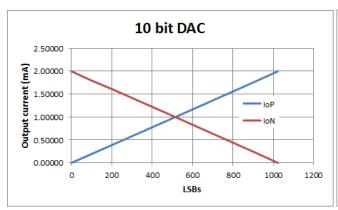
Table 3	8: Reg	ister 1	17:	OTP
---------	--------	---------	-----	-----

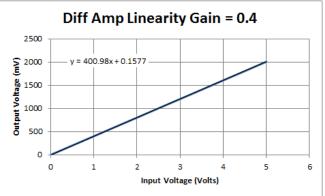
Register Description										
		D7	D6	D5	D4	D3	D2	D1	D0	
OTP register		-	-	•	-	-	•	OTP out select	OTP in select	
Default register setting on POR or RESET	0x11	0	0	0	0	0	0	0	0	
No action		Х	Х	Х	Х	Х	Х	Х	0	
Registers 18 to 22 are loaded with the POR or RESET default settings		Х	Х	Х	Х	Х	Х	Х	1	
Trim values are set according to factory OTP values		Х	Х	Х	Х	Х	Х	0	Х	
Trim values are set according to the data in registers 18 to 22			Х	Х	Х	Х	Х	1	х	
Unused register bits. Values written are stored and read back		0/1	0/1	0/1	0/1	0/1	0/1	Х	Х	

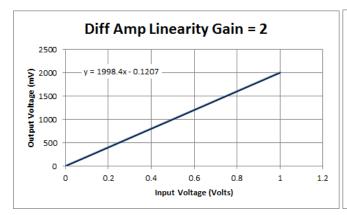
20.17 Register addresses 18 to 22: Trim

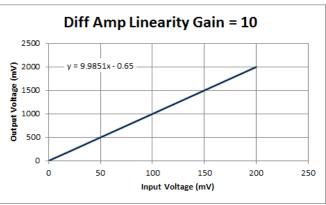

To adjust any trim values, write 0x01 to register 17 (Table 38 above) to preload registers 18 to 22 with the factory programmed OTP settings. Then write 0x00 to register 17 to allow registers 18 to 22 to be written, but not enable those registers contents to be used by the LX7730 yet. Now make any changes to the Trim registers 18 to 23 (Table 39 on page 61) in any order. Finally, active the use of the registers 18 to 22 as the trim settings by writing 0x02 to register 17.


The Trim registers 18 to 23 can be modified on the fly while activated (when register 17 = 0x02). Note however that the bits for ADCvtoi[4:0] and vtoi[4:0] are spread over two registers.

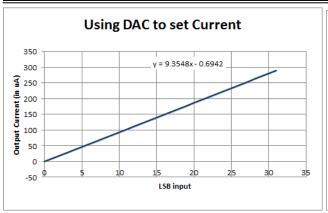

The offs[4:0] bits D3 to D0 in register 19 allow the total analog front end offset (instrumentation amplifier plus filters to the ADC input at ADC_IN to be adjusted. Adjustment are easily monitored using the ADC.

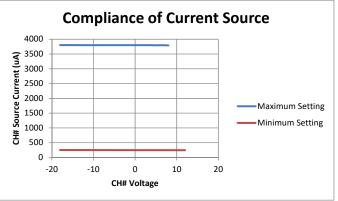

Table 39: Registers 18 to 22: Trim										
Register Description	Register	Register Data								
Register Description	Address	D7	D6	D5	D4	D3	D2	D1	D0	
Trim register 18	18	cmux2	cmux1	cmux0	vref4	vref3	vref2	vref1	vref0	
VREF adjust	0x12	Х	Х	Х			vref[4:0]			
10-bit IDAC reference adjust	• • • • • • • • • • • • • • • • • • • •	C	:mux[2:0	ux[2:0]		Х	Х	Х	Х	
Trim register 19	19	vbgtc3	vbgtc2	vbgtc1	vbgtc0	offs3	offs2	offs1	offs0	
Instrumentation amplifier offset adjust	0x13	Х	Х	Х	Х		offs	[3:0]		
Bandgap temperature coefficient adjust	OX 10		vbgt	[3:0]		Х	Х	Х	Х	
Trim register 20		vbg4	vbg3	vbg2	vbg1	vbg0	vtoi4	vtoi3	vtoi2	
Global current source adjust, trimmed first. Note: vtoi[4:0] is spread over registers 20 & 21	20 0x14	х	х	х	х	х	vtoi[4:2]		l	
Bandgap value adjust				vbg[4:0]			Х	Х	Х	
Trim register 21		vtoi1	vtoi0	osc3	osc2	osc1	osc0	ADC vtoi4	ADC vtoi3	
ADC current reference adjust. Note: ADCvtoi[4:0] is spread over registers 21 & 22	21 0x15	х	х	х	х	х	х	ADCvt	oi[4:3]	
VEE charge pump clock adjust (200kHz)	UXIO	Х	Х		osc	[3:0]		Х	Х	
Global current source adjust, trimmed first. Note: vtoi[4:0] is spread over registers 20 & 21		vtoi[1:0] x			х	х	х	х	х	
Trim register 22		ADC vtoi2	ADC vtoi1	ADC vtoi0	-	ı	-	-	-	
Unused register bits. Values written are stored and read back	22 0x16	х	х	х	0/1	0/1	0/1	0/1	0/1	
ADC current reference adjust. Note: ADCvtoi[4:0] is spread over registers 21 & 22		ADCvtoi[2:0]		х	х	х	х	х		
Trim register 23		lo_dis	-	1	-	1	-	-	-	
Unused register bits. Values written are stored and read back	23 0x17	Х	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
No action	*	0	Х	Х	Х	Х	Х	Х	Х	
Take all I/O pins Hi-Z for input threshold testing		1	Х	Х	Х	Х	Х	х	Х	

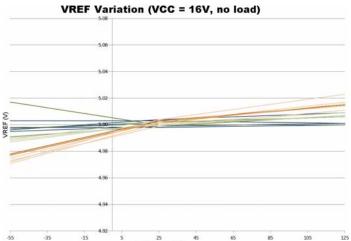

21 Characteristic Curves

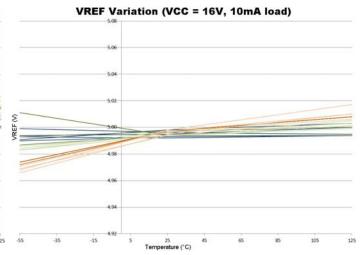


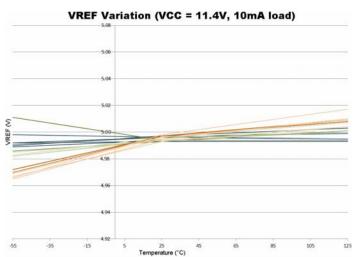


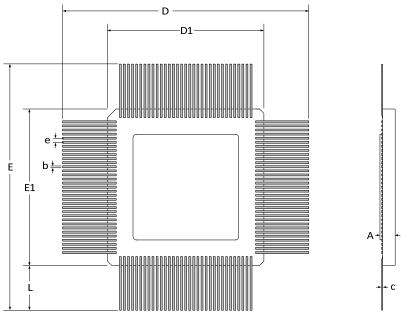












22 CQFP-132 (Ceramic Quad Flat Pack) Dimensions

Dim	Millin	neters	Inches				
Dilli	MIN	MAX	MIN	MAX			
Α	1.93	2.39	0.076	0.094			
b	0.23	0.33	0.009	0.013			
С	0.125	0.20	0.0049	0.0079			
D	39.3	7 typ	1.55	i typ			
D1	24.00	24.26	0.945	0.955			
е	0.635	BSC	0.025 BSC				
Е	39.3	7 typ	1.55 typ				
E1	24.00	24.25	0.945	0.955			
L	7.62	2 typ	0.30 typ				

Figure 25. CQFP-132 Package Dimensions

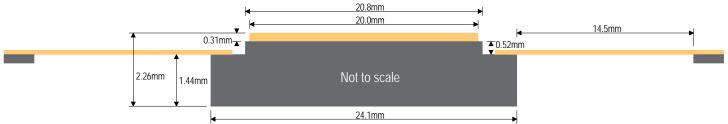


Figure 26. Package Cross-Section Nominal Dimensions as Shipped with Tie-Bars

Note:

- 1. Controlling dimensions are in mm. Imperial (inch) equivalents are shown for general information
- 2. Package includes non-conductive ceramic tie-bars mechanically connected to all pins
- 3. Parts are shipped with untrimmed and unformed leads
- 4. Package mass is 4.6g typical with 14mm leads (trimmed flush with ceramic tie-bars, tie bars discarded)
- 5. Lead material is Kovar with NiAu plating (nickel under-plate followed by gold plating)
- 6. Lid material is Kovar or Alloy 42 with NiAu plating (nickel under-plate followed by gold plating)
- 7. Lid is electrically isolated from the leads, and is bonded hermetically to the ceramic body using AuSn solder
- 8. Use the (electrically non-conductive) base of the package as the surface for conducting heat from the package

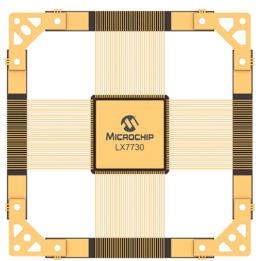
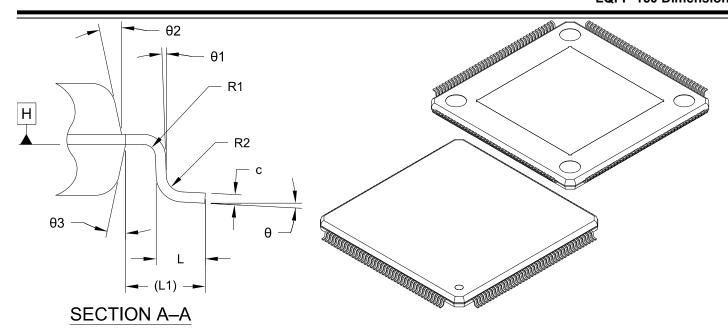



Figure 27. Package as shipped with non-conductive ceramic tie-bars, untrimmed and unformed leads

23 LQFP-160 Dimensions

160-Lead Plastic Low Profile Quad Flat Pack (G9C) - 24x24x1.4 mm Body [LQFP] With 15.6x15.6 mm Exposed Pad.


Notes:

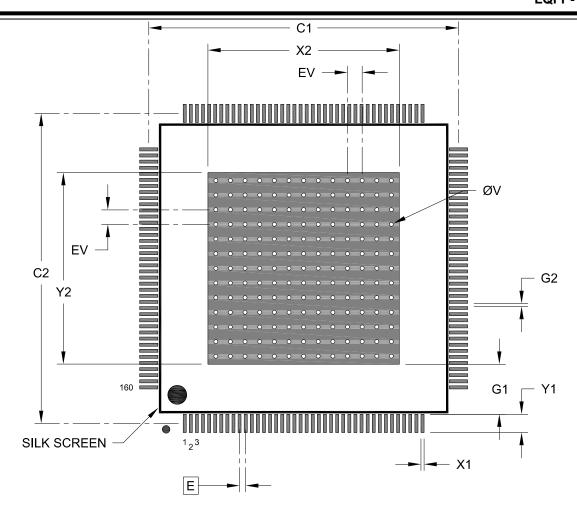
- 1. The package drawing can be downloaded by searching for code G9C on the Package Outline Drawings webpage
- 2. The moisture sensitivity level for the LQFP-160 package as defined by IPC/JEDEC J-STD-020 is MSL-3

Microchip Technology Drawing C04-25652 Rev A Sheet 1 of 2

Figure 28. 160-Lead Plastic Quad Flat Pack Package Dimensions (1 of 2)

	Units	MILLIMETERS					
]	Dimension Limits	MIN	MAX				
Number of Terminals	N		160				
Pitch	е		0.50 BSC				
Overall Height	Α	-	-	1.60			
Standoff	A1	0.05	-	0.15			
Molded Package Thickness	A2	1.30	1.40	1.45			
Overall Length	D		26.00 BSC				
Molded Package Length	D1		24.00 BSC				
Overall Width	E		26.00 BSC				
Molded Package Width	E1	24.00 BSC					
Exposed Pad Length	D2	15.60 REF					
Exposed Pad Width	E2		15.60 REF				
Terminal Width	b	0.17	0.22	0.27			
Terminal Thickness	С	0.09	_	0.20			
Terminal Length	L	0.45	0.60	0.75			
Footprint	L1		1.00 REF				
Lead Bend Radius	R1	0.08	-	-			
Lead Bend Radius	R2	0.08	0.08 - 0.20				
Foot Angle	θ	0°	0° 3.5° 7°				
Lead Angle	θ1	0°	-	-			
Mold Draft Angle	θ2	11°	12°	13°			
Mold Draft Angle	θ3	11°	12°	13°			

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-25652 Rev A Sheet 2 of 2

Figure 29. 160-Lead Plastic Quad Flat Pack Package Dimensions (2 of 2)

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	E		0.50 BSC		
Center Pad Width	X2			15.70	
Center Pad Length	Y2			15.70	
Contact Pad Spacing	C1		25.40		
Contact Pad Spacing	C2		25.40		
Contact Pad Width (Xnn)	X1			0.25	
Contact Pad Length (Xnn)	Y1			1.50	
Contact Pad to Center Pad (Xnn)	G1	4.10			
Contact Pad to Contact Pad (Xnn)	G2	0.25			
Thermal Via Diameter	V		0.33		
Thermal Via Pitch	EV		1.20		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-27652 Rev A

Figure 30. 160-Lead Plastic Quad Flat Pack Recommended Land Pattern

23.1 LQFP-160 Packaging Notes

- 1. Package mass is 1.6g typical
- 2. Lead frame material is Cu
- 3. Lead finish is NiPdAu
- 4. Bond wires are Au
- 5. Mold compound is Sumitomo G700X with the following outgassing properties:
 - a. Total Mass Loss (TML): 0.08
 - b. Recovered Mass Loss/Water Vapor Regained (RML/WVR): 0.03
 - c. Collected Volatile Condensable Material (CVCM): 0.01
- 6. Connect the exposed pad on the package underside to SGND and use the pad to conduct heat from the package

24 Dual-Footprinting the CQFP-132 and LQFP-160 Packages

While there is no factory recommendation for lead forming the CQFP-132 package, Figure 31 below shows the forming used for the LX7730 daughter board. Figure 32 shows a corresponding typical footprint, with pads 1mm longer than and centered under each foot. Comparing the CQFP-132 and LQFP-160 footprints shows the considerations to be taken when planning a possible PCB layout change between packages. The main concern is allowing for the exposed pad under the LQFP-160 package, which must be connected to analog AGND. Since the underside of the CQFP-132 package is electrically non-conductive ceramic, a split AGND plus digital DGND arrangement can be used. This is shown in the pinout in section 1 on page 2. Note that a dual-layout can be made possible by forming the CQFP-132 leads further apart than shown in Figure 31 below, so that the correspondingly modified CQFP-132 footprint no longer overlaps the LQFP-160 footprint.

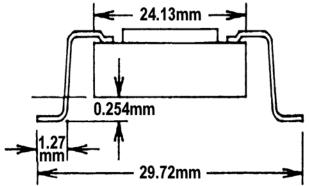


Figure 31. CQFP-132 Forming Specification used on the LX7730-DB

Figure 32. Comparing CQFP-132 and LQFP-160 Footprints

25 Revision History

25.1 Revision 1.4 - May 2018

This is the release before the change log started.

25.2 Revision 2.0 - July 2019

Electrical characteristic table changes: ESD susceptibility in Absolute Maximum Ratings split into two lines for clarity. Data sheet body revised significantly for clarity.

25.3 Revision 2.1 - September 2019

Typos fixed in text, Tables 4 & 5.

Added maximum limit for operating current with external VEE to EC table.

Added package mass.

25.4 Revision 2.2 - October 2019

Low power version added (VCC operating current I_{VCC} reduced from 85mA maximum to 78mA, VCC standby current I_{VCC} reduced from 7mA maximum to 6.75mA).

CLK pin clarified as 125kHz to 500kHz clock.

Parallel interface figures merged into one for clarity.

Details and guidelines added for register 8 operations

25.5 Revision 2.3 - January 2020

QFP-208 plastic package added.

25.6 Revision 2.4 - June 2020

Section 14 expanded to clarify operation with negative-going single-ended inputs.

Noted that CQFP-132 ES part is not hermetic, lid and lead material is Kovar, and lid is isolated.

Typos fixed: Section 1 title, Table 1 used RESET instead of EXT_REF, EC Table used LX7300 instead of LX7730.

Corrected flows for LMFQ-V and LMFQ-Q in ordering table.

Clarified krad to krad(Si) and added SAM3X8ERT to first page.

Swapped QFP-208 and CQFP-132 pin configuration drawings to match pin description order.

Clarified that SPI transactions must be 15 bits long.

Split Table 13 into two tables.

Added heatsinking section.

Noted in section 16.1.1 and Figure 9 that SE_RTN is available as a differential inverting input.

25.7 Revision 2.5 - February 2021

Branding moved from Microsemi to Microchip, and some terminology changed. Engineering Sample disclaimer added.

Electrostatic Discharge Ratings moved from Absolute Maximum Ratings to a separate table.

MAX7730LMFQ parts upgraded to -V and -Q, and SMD part numbers added.

CQFP-132 package θ_{JC} corrected from 10 to 1.9°C/W.

Separated some specifications in electrical characteristics table as different for plastic packaged vs ceramic packaged parts.

Changed pin references in absolute maximum and electrical characteristics tables from numbers to names.

Added section 13.1.3 VREF Options.

Table 9 title corrected from 'Non-Inverting' to 'Inverting'.

Corrected section 18.3 for bus interface selection.

Added cross-section dimensions to CQFP-132 package, clarified lead & lid plating.

Added figure title to QFP-208 dimensions.

25.8 Revision 2.6 - August 2021

Replaced 208 pin plastic package with 160 pin version

Corrected pin descriptions for SPI_A and SPI_B and added link to digital interfaces section 18.

Corrected Table 39 that ADCvtoi[4:0] is spread over registers 21 & 22, not 20 & 22.

Updated Table 6 to give voltage across bias resistors in terms of VREF.

Added more detail to section 18.3 about interface selection, and section 18.5 about serial interface operation.

25.9 Revision 2.7 - July 2022

Updated weblinks from Microsemi to Microchip.

Corrected LMMF suffix to LMLF on front page.

Added ceramic package mechanical sample to ordering table.

Fixed some incorrect text cross-references.

Add the 200kHz VEE charge pump frequency to relevant sections.

Added settling time advice to section 20.7.

Added sections 16.2 and 16.3 with sensor interface guidance.

25.10 Revision 2.8 - June 2023

Page 1: Added SAMRH707F18 to first paragraph MCU list, added plastic package JESD47 qualification and corrected 55°C to -55°C in last paragraph.

Correct GND typos in Note 1 on page 2.

LX7730MFQ-V (SMD5962-1721901VXC) and LX7730MFQ-Q (SMD5962-1721901QXC) removed from ordering table as the LX7730LMFQ-Q and LX7730LMFQ-V are drop-in replacements with tighter specifications.

LX7730LMFQ-ES is added to ordering table replacing and superseding the LX7730MFQ-ES with tighter specifications.

Added plastic package mechanical sample to ordering table.

Added EP line to LQFP-160 pin descriptions.

Added a paragraph to section 13.1.2 discussing VEE charge pump noise.

Corrected Figure 16 ACK timing is 20ns max not 20ns min.

Noted in packaging section that the base of the CQFP-132 package is electrically non-conductive.

Added section after packaging discussing dual package layout options.

25.11 Revision 2.9 - September 2023

Corrected I_{CH#_DAC31} specifications in electrical characteristics table which were swapped plastic vs ceramic packaging. Programmable Current Source INL and DNL changed from ±2µA to ±2.5µA for the plastic packaged part. Updated Equation 11 on page 57 and the two examples following to reflect the specification change.

25.12 Revision 2.91 - October 2023

Corrected R/W to W/R in section 18.5.

25.13 Revision 2.92 - November 2023

Corrected Figure 20 "Start Conv bit D1 in Register 8 is cleared" was pointing to 25th CLK rising edge instead of 26th. Corrected Figure 21 Busy and Data Ready flags were inverted, and it showed the input sample period ending on the 26th rising edge of CLK when it should be the 25th.

Corrected section 20.9 "Start Conv bit D1 in ADC Control register 8 is cleared by the 25th CLK rising edge" to "Start Conv bit D1 in ADC Control register 8 is cleared by the 26th CLK rising edge" and " ADC Control register 8 Start Conv bit D1 is cleared the ADC's state machine on the 25th rising edge of CLK" to "ADC Control register 8 Start Conv bit D1 is cleared the ADC's state machine on the 26th rising edge of CLK".

Updated "Use IDAC" flag in Register 5 to be "Use DAC" to make logical sense.

25.14 Revision 2.93 - March 2024

10-bit current DAC full scale tolerance changed from $\pm 60\mu A$ to $\pm 70\mu A$ for the plastic packaged part. Added Equation 10 on page 56 to reflect the specification change.

Clarified in section 16.1.1 that if both inverting and non-inverting inputs to the instrumentation amplifier are set to channels on the same multiplexer bank, then any resulting ADC conversion will read 0x000.

Clarified in section 18.4 that the parallel bus fault scenario of $\overline{CE} = \overline{VE} = 0$ leaves the I/Os safely tristate.

Clarified in sections 18.4.1 and 18.4.2 that it is not necessary for $\overline{\text{CE}}$ to go high when changing between reads and writes. Clarified in sections 20.5 and 20.15 that selecting I GND in the Calibration register 16 over-rides the Use SE_RTN bit in the Inverting Mux Channel Select register 4.

25.15 Revision 2.94 - September 2024

Added θ_{JA} to section 15.

Added Table 20, Table 21, Table 23, Table 24 providing the full codes used to select a particular channel input for the non-inverting and inverting multiplexors.

Updated the plastic package drawings link and added the plastic package moisture sensitivity level (MSL) in section 23.

25.16 Revision 2.95 - December 2024

Added thermal resistance values for plastic package to section 10. Added LQFP-160 packaging notes section 23.1 with material details.

25.17 Revision 3 - January 2025

Corrected typo UVD to UVLO in multiple places..

Updated figures style.

Corrected description for reset register 0 which is write only, not read-write.

The Microchip Website

Microchip provides <u>online support</u> via our website at <u>https://www.microchip.com</u>. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups,
 Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to https://www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: https://microchip.my.site.com/s

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable"

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAMBA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet Iogo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified Iogo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2025, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit https://www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

https://microchip.my.site.com/s

Web Address:

https://www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX**

Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 Detroit

Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC

Tel: 919-844-7510 New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 China - Beijing

Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588 China - Dongguan

Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR

Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000 China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252 China - Xiamen

Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 India - New Delhi

Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200 Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Tel: 63-2-634-9065

Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Thailand - Bangkok

Tel: 66-2-694-1351 **Vietnam - Ho Chi Minh** Tel: 84-28-5448-2100 Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

EUROPE

Austria - Wels

Finland - Espoo

Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 Germany - Rosenheim

Tel: 49-8031-354-560 Israel - Ra'anana

Tel: 972-9-744-7705 **Italy - Milan**

Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova

Tel: 39-049-7625286 Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340 **Norway - Trondheim** Tel: 47-72884388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820