

High-Speed USB 2.0 480Mbps Switch

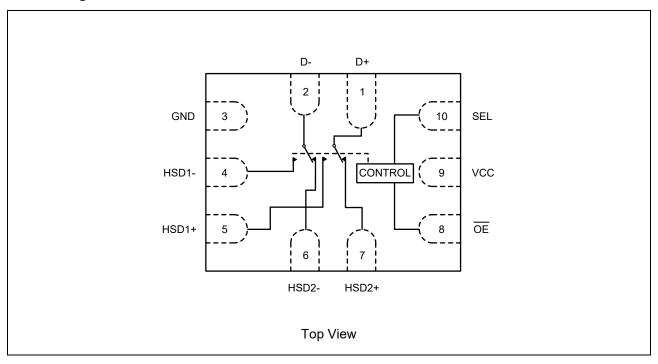
General Description

The ET7228 is a 2CH single-pole/double-throw (SPDT) switches. Their wide bandwidth and low bit-to-bit skew allow them to pass high-speed differential signals with good signal integrity.

Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference. Their bandwidth is wide enough to pass High-Speed USB 2.0 differential signals (480 Mb/s).

ET7228 is offered in a QFN10L package.

Features

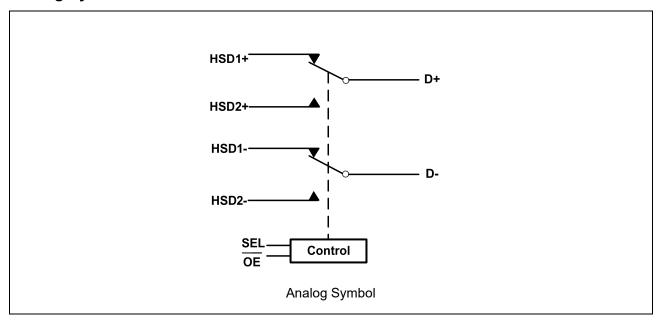

- Ron is typically 6.0 Ω @ Vcc = 3.3 V
- Low Bit-to-Bit skew is typically 50 ps
- Low current consumption is 1.0 μA typical
- Near-zero propagation delay is typical 250 ps
- Channel on-capacitance is 4.0 pF typical
- V_{CC} operating range from 1.65 V to 4.5 V
- Part No. and package

Part No.	Package	MSL
ET7228	QFN10L(1.8 mm×1.4 mm)	Level 1

Applications

- Differential Signal Data Routing
- USB 2.0 Signal Routing

Pin Configuration


Pin Function

Pin No.	Pin Name	Pin Function		
1	D+	Data Ports		
2	D-	Data Ports		
3	GND	Ground		
4	HSD1-	Data Ports		
5	HSD1+	Data Ports		
6	HSD2-	Data Ports		
7	HSD2+	Data Ports		
8	ŌĒ	Output Enable		
9	VCC	Power supply		
10	SEL	Select Input		

Truth Table

ŌE	SEL	HSD1+ to D+, HSD1- to D-	HSD2+ to D+, HSD2- to D-
1	Х	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

Analog Symbol

ET7228

Absolute Maximum Ratings

Symbol	Pins	Parameters	Value	Unit
Vcc	VCC	Positive DC Supply Voltage	-0.5 to +6.0	V
V _{IS}	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Voltage	-0.5 to Vcc	V
VIS	D+,D-	Analog Signal Voltage	-0.5 to +5.5	V
VIN	ŌĒ	Control Input Voltage	-0.5 to +6.0	V
Icc	VCC	Positive DC Supply Current	50	mA
lia agu	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Continuous	±100	mA
lis_con	D+,D-	Current	<u> </u>	IIIA
lis pk	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Continuous	±150	mA
IIS_PK	D+,D-	Current 10% Duty Cycle	± 130	ША
l _{IN}	ŌĒ	Control Input Current	±20	mA
TJ		Junction Temperature Range	-40 to +150	°C
Tstg		Storage Temperature	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions

Symbol	Pins Parameter		Min	Max	Unit
Vcc	VCC	Positive DC Supply Voltage	1.65	4.5	V
V/	HSD1+,HSD1-,HSD2+,HSD2-	Analog Cignal Valtage	GND	Vcc	V
Vis	D+,D-	Analog Signal Voltage	GND	4.5	
V _{IN}	ŌĒ	Digital Select Input Voltage	GND	Vcc	V
T _A		Operating Temperature Range	-40	+85	°C

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

DC Electrical Characteristics

Control Input (Typical: T_A = 25 °C, V_{CC} = 3.3 V)

Symbol	Pins	Parameter	Test	V (\(\)	-40°C to +85°C			unit
Symbol Pins	FIIIS	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	unit
	SEL	Control Input High		2.7	1.0			
V _{IH}	OE OE	Control Input High Voltage ⁽¹⁾		3.4	1.1	-	-	V
	OE Voltage(*)		4.2	1.12				
	CE.	Control Input Low		2.7			0.4	
VIL	SEL	Control Input Low		3.4	-		0.4	V
OE OE	Voltage ⁽¹⁾		4.2			0.5		
L		Control Input	0 < 1/- < 1/-	1.65 ~ 4.5			110	
lin		Leakage Current	0 ≤ V _{IS} ≤V _{CC}	1.00 ~ 4.5	-	-	±1.0	μA

Note1: V_{IH} level is recommended to be consistent with V_{CC} and V_{IL} level is GND to reduce I_{CC} current.

Supply And Leakage Current (Typical: $T_A = 25$ °C, $V_{CC} = 3.3$ V, $\overline{OE} = V_{CC}$ or GND, $S = V_{CC}$ or GND)

Symbol	Pins	Parameter	Test Conditions	V (V)	-40°C to +85°C		unit
Syllibol	FIIIS	Parameter Test Conditions		V _{CC} (V)	Min	Max	unit
Icc	Vcc	Quiescent Supply Current	$V_{IS} = V_{CC} \text{ or GND};$ $I_{OUT} = 0A$	1.65 ~ 4.5	-	1.0	μΑ
Ісст	Vcc	Increase in Icc per Control Voltage	V _{IN} = 2.6V	3.6	-	10	μΑ
loz	HSD1+ HSD1- HSD2+ HSD2-	OFF Stage Leakage Current	0 ≤ V _{IS} ≤ V _{CC}	1.65 ~ 4.5	-	±1.0	μА
loff	D+, D-	Power OFF Leakage Current	0 ≤ V _{IS} ≤ 4.5V	0	-	±1.0	μΑ

ET7228

High Speed On Resistance (Typical: T_A = 25 °C, V_{CC} = 3.3 V)

Symbol	Parameter	Test Conditions	V (\(\)	-40	5°C	unit	
Symbol	Parameter	rest Conditions	Test Conditions V _{CC} (V)			Max	unit
			2.7		6.5	12	
Ron	R _{ON} On-Resistance	nce V _{IS} = 0.2V, 0.4V	3.3	-	6.0	10	Ω
			4.2		5.5	8	
	On-Resistance		2.7		0.3	1.5	
R _{FLAT}	Flatness		3.3	-	0.2	1	Ω
	riauless		4.2		0.1	0.5	
	On-Resistance		2.7		0.25	0.5	
$\triangle R_ON$			3.3	-	0.2	0.45	Ω
	Matching		4.2		0.15	0.4	

Full Speed On Resistance (Typical: $T_A = 25 \, ^{\circ}\text{C}$, $V_{CC} = 3.3 \, \text{V}$)

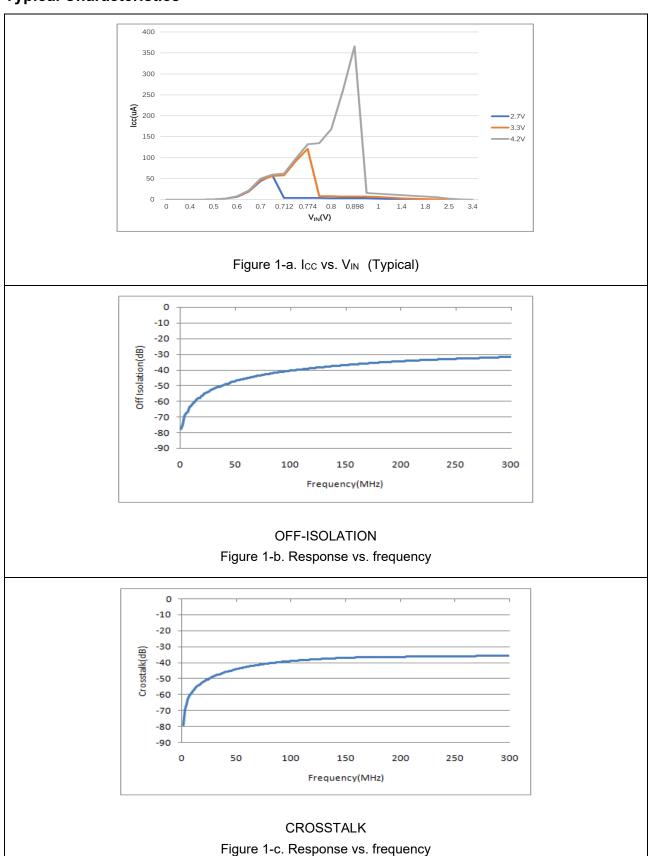
Cumbal	Parameter	Test Conditions	V (\(\)	-40	°C to +8	5°C	unit
Symbol	Parameter	rest Conditions	V _{CC} (V)	Min	Тур	Max	unit
			2.7		9.0	13	
Ron On-Resi	On-Resistance	\/ = 0.2\/ 0.5\/	3.3	-	7.5	11	Ω
		$V_{IS} = 0.2V_{CC}, 0.5V_{CC},$	4.2		6.0	9	
	On-Resistance	0.8Vcc, Vcc Ion = 8mA	2.7		0.5	0.8	
$\triangle Ron$			3.3	-	0.4	0.7	Ω
	Matching		4.2		0.3	0.6	
	On-Resistance	V _{IS} = 0.2V,0.4V,	2.7		1.0	3	
R _{FLAT}	Flatness	0.7V,1.0V	3.3	-	0.5	1.5	Ω
		I _{ON} = 8mA	4.2		0.4	1.2	

AC Electrical Characteristics(2)

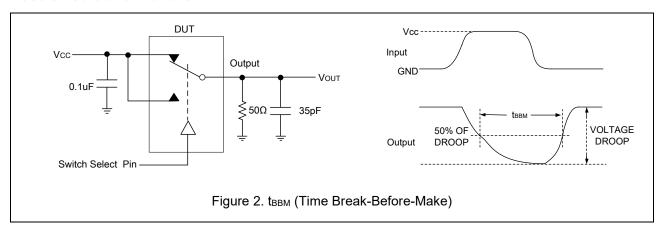
Timing / Frequency (Typical: T_A = 25 °C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

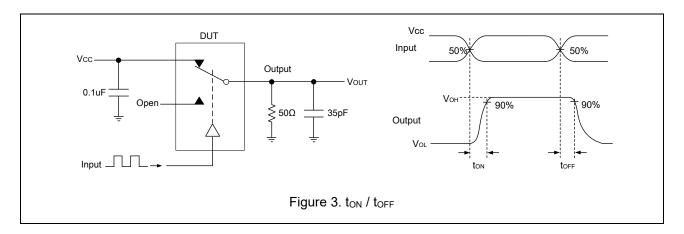
Symbol	Parameter	Test Conditions	V (\(\)	-40	unit		
Symbol	Parameter	rest conditions	V _{CC} (V)	Min	Тур	Max	unit
ton	Turn-ON Time		2.7 ~ 4.5	ı	14	20	ns
toff	Turn-OFF Time		2.7 ~ 4.5	-	21	25	ns
tввм	Break-Before-Make Delay	V _{IS} = 0V to V _{CC}	2.7 ~ 4.5	2	8	-	ns
DW	2 dB Dandwidth	C _L = 5pF	27 - 45	-	550	-	MU¬
BW	-3 dB Bandwidth	C _L = 0pF	2.7 ~ 4.5	1	900	-	MHz

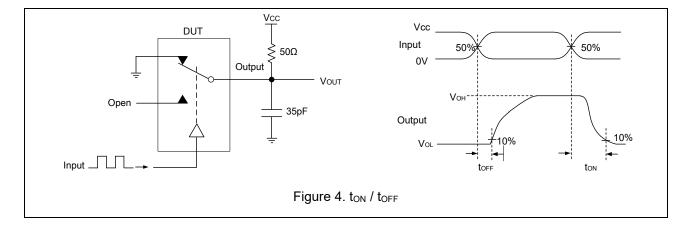
Isolation (Typical: T_A = 25 °C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)


Symbol	Pins Parameter		Conditions	V (V)	-40°C to +85°C			unit
Symbol	PIIIS	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	unit
Oirr	Open	OFF-Isolation	f = 250MHz	1.65 ~ 4.5	-	-30	-	dB
Xtalk	HSD1+ to	Non-Adjacent	f = 250MHz	1.65 ~ 4.5		-45		dB
∧ ralk	HSD1-	Channel Crosstalk	f = 250MHz	1.00 ~ 4.5		-40		uD

Capacitance (Typical: $T_A = 25$ °C, $V_{CC} = 3.3$ V, $R_L = 50$ Ω , $C_L = 5$ pF, f = 1 MHz)


Symbol Pins	Dine	Parameter	Conditions	Conditions V. (V)	-40°C to +85°C			unit
	FIIIS	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	unit
C	ŌE	Control Pin Input		0		2.0		nΕ
Cin	OE	Capacitance		0		2.0		pF
Con	D+ to	ON Canacitanas	\/ - 0\/	3.3		8.0		"ר
CON	HSD1/2+	ON Capacitance	V _{OE} = 0V	3.3		6.0		pF
C	HSD2+,	OFF Consoitance	V _{IS} = 3.3V			2.5		ъГ
Coff	HSD2-	OFF Capacitance	V _{OE} = 3.3V	3.3		3.5		pF


Note2: AC parameter is guaranteed by design.


Typical Characteristics

Test Circuit and Waveform

Test Circuit and Waveform(Continued)

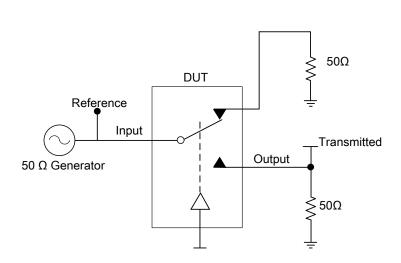
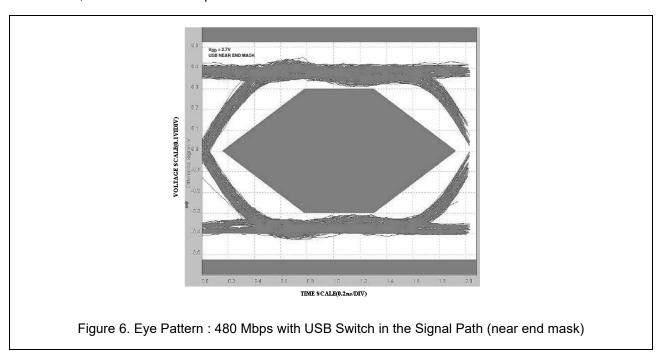


Figure 5. Off Channel Isolation/On Channel Loss(BW)/Crosstalk

(On Channel to Off Channel)/VonL

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

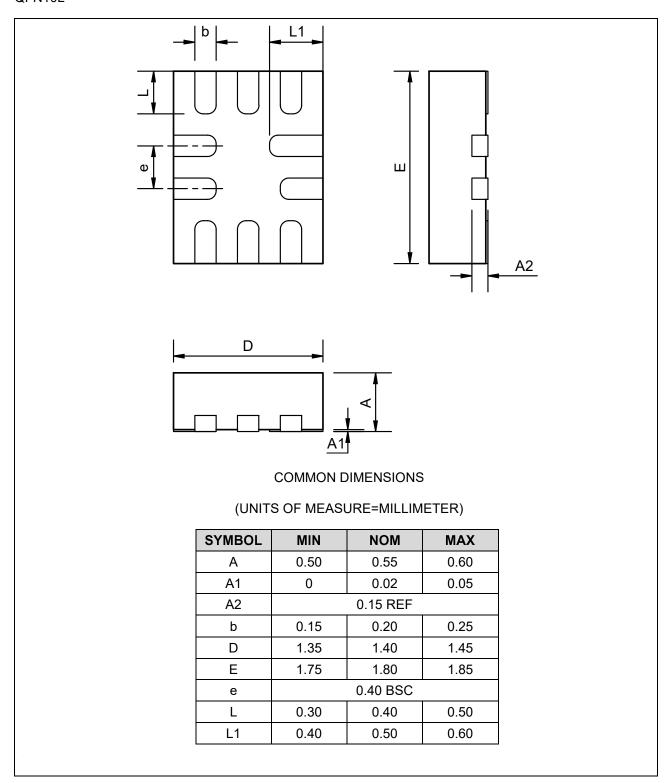
 V_{ISO} = Off Channel Isolation = 20 lg (V_{OUT}/V_{IN}) for V_{IN} at 100 kHz.


 V_{ONL} = On Channel Loss = 20 lg (V_{OUT} / V_{IN}) for V_{IN} at 100 kHz to 50 MHz.


Bandwidth (BW) = the frequency 3 dB below VonL.

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω .

Typical Performance Curves


 T_A = +25 °C, Unless Otherwise Specified

Package Dimension

QFN10L

ET7228

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function &	Package &
				Spec Checking	Tape Checking
1.0	2015-09-20	Original Version	Liu Xiao Min	Liu Xiao Min	Zhu Jun Li
1.1	2016-08-02	Update some parameters	Liu Xiao Min	Liu Xiao Min	Zhu Jun Li
1.2	2020-03-16	Documents check and formalize	Shib	Shib	Liujy
1.3	2022-11-15	Update Typeset and EC table	Qinpl	Qinpl	Liujy
1.4	2024-1-3	Add Tj	Shib	Shib	Liujy