

# Ultra Low Power sub 1GHz Multichannels Radio Transceiver

The RC-CC1312R-XXX module is based on Texas Instruments CC1312R1F3RGZ component. This device combines a flexible, very low power RF transceiver with a powerful 48 MHz ARM Cortex M4F CPU in a platform supporting multiple physical layers and RF standard. This device is pin to pin compatible with the module RC-CC1310-XXX.



RC-CC1312R - XXX

Frequency 434=434MHz 868=868MHz 915=915MHz



Sub-1Ghz technology is becoming one of the chief driving forces behind the **Internet of Things** (**lot**), in particular this type of module is ideal for this applications basically for the following reasons:

**Ultra low power consumption**, the consumption of this device is 5.5mA when receiving and 23.5mA when transmitting at +14dBm (13.4mA at +10dBm) in sleep mode the consumption is 0.6µA (microamps).

**Long range operations**, the sensitivity parameter is -110dBm at data rates of 50 kbps and down to -124dBm when the data rate is 0.625kbps.

Interference from other wireless communications can be overcome with 90dB of blocking. The RF output power levels can reach up to +14dBm.

All this ensure a robust signaling for long range communications.

**SimpleLink-Easylink** compatibility,ultra-low power platform designed (from TI) to easily implement the long-range connectivity with low power consumption on the Internet of Things projects (IoT).

**TI-15.4 Stack**, IEEE802.15.4e/g Standard Based Star Networking Software Designed for long range & robust star networks

**6LoWPAN** compatibility with mesh network stack for **Contiki**.

#### **Applications:**

- Low-Power Wireless Systems
- Smart Grid and Automatic Meter Reading
- Home and Building Automation
- Wireless Sensor Network
- 6LoWPAN systems

#### Feature:

- IEEE 802.15.4g mode switch support
- Ultra Low consumption technology
- Powerful ARM Cortex M4
- Supported by the open platform Contiki 6LoWPAN.
- Very Small size

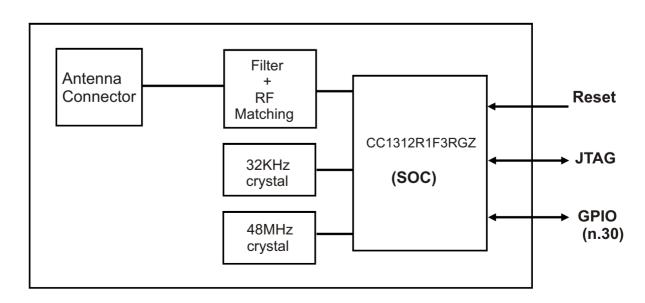


#### **Technical Characteristics**

| RC-CC1312R-XXX                        |                   |       |             |       |        |
|---------------------------------------|-------------------|-------|-------------|-------|--------|
| Parameter                             | Symbol            | Min.  | Тур.        | Max.  | Units  |
| Operating Voltage                     | V <sub>cc</sub>   | 1.8   | 3.00        | 3.8   | VDC    |
| Supply Current RX Mode                | I <sub>CRX</sub>  |       | 5.80        |       | mA     |
| Supply Current TX Mode +10dBm         | I <sub>CTX1</sub> |       | 13.40       |       | mA     |
| Supply Current TX Mode +14dBm         | I <sub>CTX2</sub> |       | 24.90       |       | mA     |
| Supply Current Standby Mode           | I <sub>CSTB</sub> |       | 0,85        |       | μΑ     |
| Supply Current Shut Down Mode         | I <sub>cshu</sub> |       | 150         |       | nA     |
| Operative Frequency                   | F                 |       | 433/868/915 |       | MHz    |
| Frequency Error                       | F                 |       | ±10         |       | ppm    |
| RF Power Output 50ohm (*)             | P <sub>oo</sub>   | -10.0 |             | +14.0 | dBm    |
| RF Sensibility 50kbps                 | S <sub>d</sub>    |       | -110.0      |       | dBm    |
| RF Sensibility Long Range Mode 625bps | S <sub>LR</sub>   |       | -121.0      |       | dBm    |
| Data Rate (*)                         | D <sub>CC</sub>   | 0,01  |             | 4.0   | Mbit/s |
| Operative Temperature                 | T <sub>LR</sub>   | -30   |             | +75   | °C     |

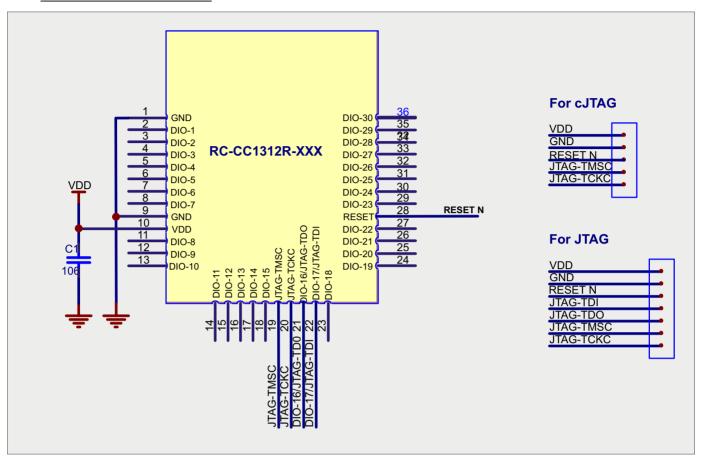
(\*) Programmable parameter.

#### **MICROCONTROLLER:**

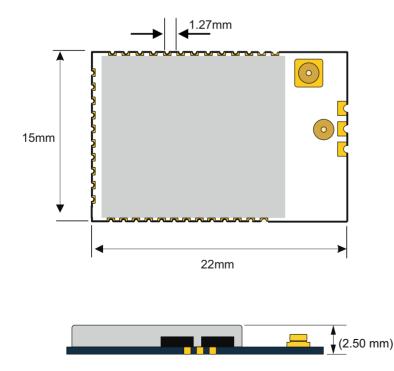

- Powerul 48MHz ARM Cortex M4F Processor
- 352KB of in-system Programmable Flash
- 256KB of ROM for protocol and library function
- 8KB of SRAM for Cache
- 80KB of Ultralow Leakege SRAM
- Support Over-the-Air Upgrade (OTA)

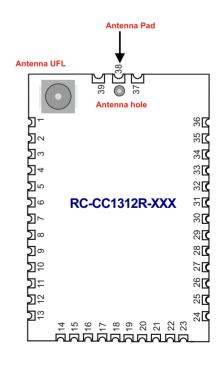
#### **Development Tools and Software from TI**

- CC1312R LaunchPad™ Development Kit
- SimpleLink™ CC13X2-CC26X2 Software Development Kit
- SmartRF™ Studio for simple radio configuration
- Sensor Controller Studio for building low-power sensing applications


For more information and details, please refer to the CC1312R Texas Instruments datasheet.

## **Block Diagram**

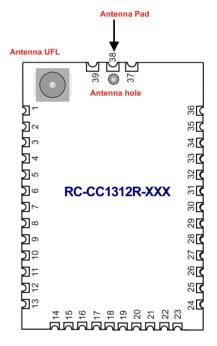



### **Reference Schematics**



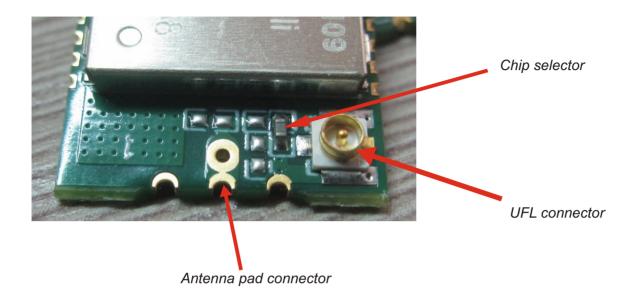
## **Mechanical Dimension**








## **Terminal description RC-CC1312R-XXX**


| Pads | Name      | Description                            |
|------|-----------|----------------------------------------|
| 1    | GND       | Ground                                 |
| 2    | DIO-1     | GPIO                                   |
| 3    | DIO-2     | GPIO                                   |
| 4    | DIO-3     | GPIO                                   |
| 5    | DIO-4     | GPIO                                   |
| 6    | DIO-5     | GPIO, High drive capability            |
| 7    | DIO-6     | GPIO, High drive capability            |
| 8    | DIO-7     | GPIO, High drive capability            |
| 9    | GND       | Ground                                 |
| 10   | VDD       | Power                                  |
| 11   | DIO-8     | GPIO                                   |
| 12   | DIO-9     | GPIO                                   |
| 13   | DIO-10    | GPIO                                   |
| 14   | DIO-11    | GPIO                                   |
| 15   | DIO-12    | GPIO                                   |
| 16   | DIO-13    | GPIO                                   |
| 17   | DIO-14    | GPIO                                   |
| 18   | DIO-15    | GPIO                                   |
| 19   | JTAG-TMSC | JTAG TMSC, High drive capability       |
| 20   | JTAG-TCKC | JTAG TCKC                              |
| 21   | DIO-16    | GPIO,JTAG -TDO, High drive capability  |
| 22   | DIO-17    | GPIO,JTAG-TDI, High drive capability   |
| 23   | DIO-18    | GPIO                                   |
| 24   | DIO-19    | GPIO                                   |
| 25   | DIO-20    | GPIO                                   |
| 26   | DIO-21    | GPIO                                   |
| 27   | DIO-22    | GPIO                                   |
| 28   | RESET-N   | RESET, (Active low - Internal pull up) |
| 29   | DIO-23    | GPIO, Analog capability                |
| 30   | DIO-24    | GPIO, Analog capability                |
| 31   | DIO-25    | GPIO, Analog capability                |
| 32   | DIO-26    | GPIO, Analog capability                |
| 33   | DIO-27    | GPIO, Analog capability                |
| 34   | DIO-28    | GPIO, Analog capability                |
| 35   | DIO-29    | GPIO, Analog capability                |
| 36   | DIO-30    | GPIO, Analog capability                |
| 37   | GND       | Ground                                 |
| 38   | Antenna   | Antenna PAD                            |
| 39   | GND       | Ground                                 |



Pin out device




## Type of Antenna connection



#### Difference between standard version and «H» version



- With UFL Connector
- Antenna connection to the UFL connector



RC-CC1312R-XXX-H

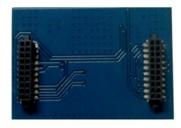
- Without UFL Connector
- Antenna connection to hole and pad



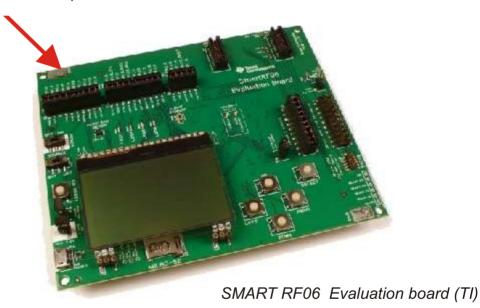
RC-CC1312R-XXX

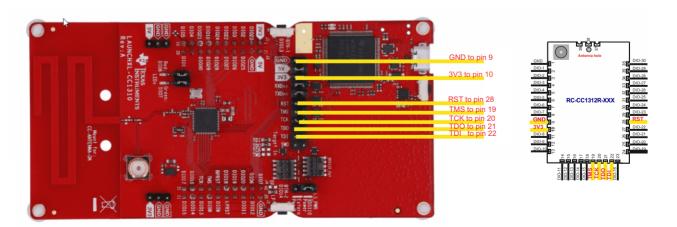


RC-CC1312R-XXX-H




## RC-CC1312R-XXX Adapter board


To make immediate usable the RC-CC1312R-XXX module with TI development systems has been realized the following board adapter.




Adapter board front



Adapter board rear





Texas Instruments Launchpad Connection



### Recommended Hardware design

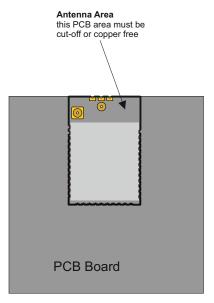
#### 1) Hardware

All unused pins should be left floating; do not ground. All GND pins must be well grounded.

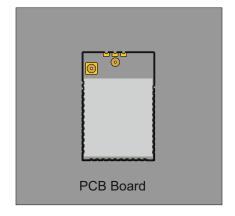
Traces should not be routed underneath the module.

#### 2) Power Supply

The transceiver module must be powered from a regulated voltage. It is recommended to keep the power supply line for VCC as short and low impedence as possible. Near the power pins it is recommended to insert a ceramic the decoupling capacitor (100nF).


#### 3) Ground Plane

It is recommended to have a copper ground plane under the shielded zone of the module. The ground plane should be unbroken.




### 4) Module Placement

The antenna on the PCB has an omnidirectional radiation pattern. To maximize antenna efficiency, an adequate grounding plane must be provided under the module. Instead the areas underneath and surrounding the antenna area must be free of copper.



Recommended location XY plane



Not Recommended location XY plane



## FCC Statement (915MHz version):

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.

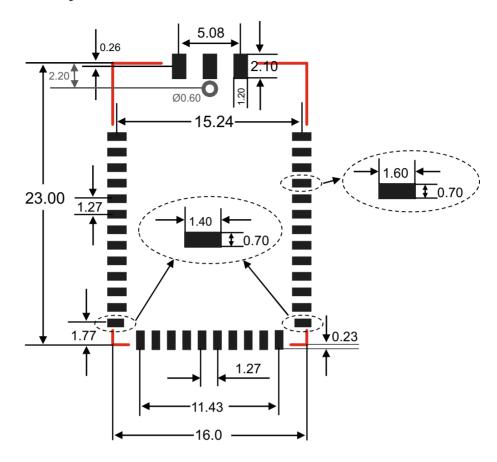
These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

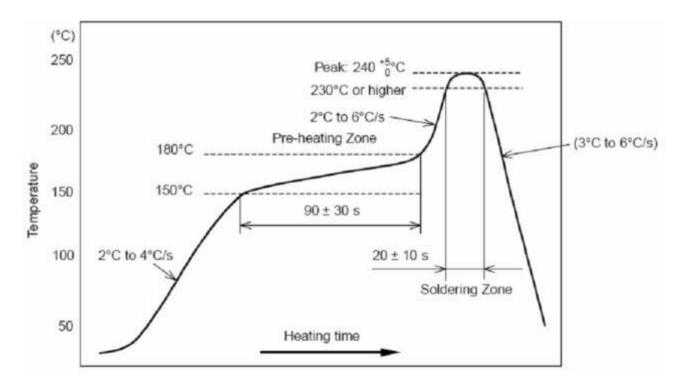
However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- 1) Reorient or relocate the receiving antenna.
- 2) Increase the separation between the equipment and receiver.
- 3) Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- 4) Consult the dealer or an experienced radio/TV technician for help.

Caution: Any changes or modifications to this device not explicitly approved by manufacturer could void your authority to operate this equipment.

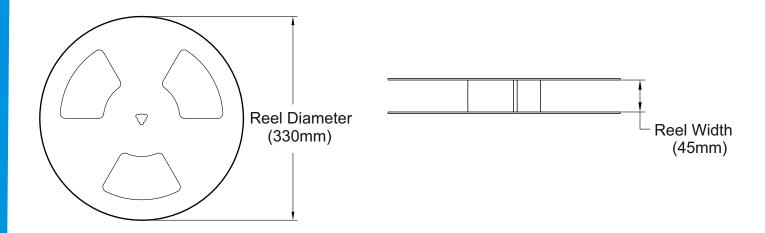

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

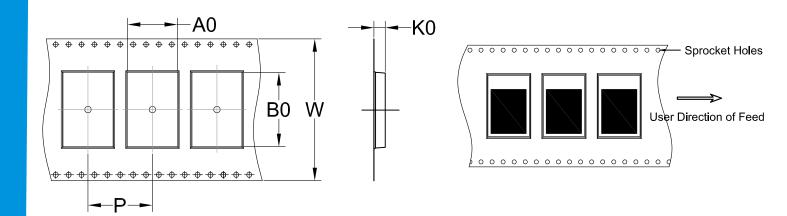

FCC ID: 2ANH5RC-CC1312R-915



## **Recommended PCB Layout**




## **Recommended Reflow Profile for Lead Free Solder**






#### **REEL DIMENSIONS**



#### **TAPE DIMENSIONS**



| A0 | Dimension designed to accommodate the component width     | 15.5mm | ± 0.10mm |
|----|-----------------------------------------------------------|--------|----------|
| В0 | Dimension designed to accommodate the component length    | 23.0mm | ± 0.10mm |
| K0 | Dimension designed to accommodate the component thickness | 3.5mm  | ± 0.10mm |
| W  | Overall width of the carrier tape                         | 44.0mm | ± 0.30mm |
| Р  | Pitch between successive cavity centers                   | 20.0mm | ± 0.10mm |