MIC333/2333

23 μA, 300 kHz Zero-Drift Operational Amplifiers

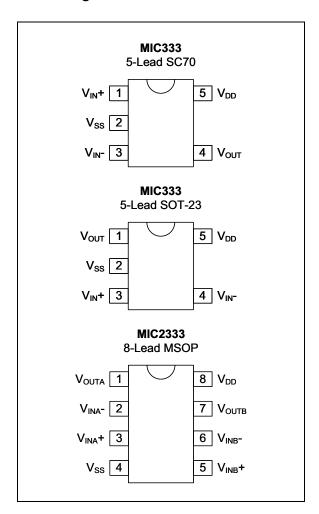
Features

- · High DC Precision:
 - Offset Voltage: V_{OS} = ±8 μV (maximum)
 - Offset Voltage Drift: V_{OS} Drift = ±0.03 μV/°C (maximum)
 - Open-Loop Gain:
 A_{OL} = 120 dB (minimum, V_{DD} = 5.5V)
 - Power Supply Rejection Ratio (PSRR):
 PSRR = 120 dB (minimum, V_{DD} = 5.5V)
 - Common-Mode Rejection Ratio (CMRR):
 CMRR = 120 dB (minimum, V_{DD} = 5.5V)
 - Input Noise Voltage: $E_{ni} = 1 \mu V_{P-P}$ (typical, f = 0.1 Hz to 10 Hz)
- · Low Power and Supply Voltages:
 - Quiescent Current per amplifier:
 I_Q = 23 μA/amplifier (typical)
 - Supply Voltage Range: +1.8V to +5.5V
- Rail-to-Rail Input/Output (I/O)
- Gain Bandwidth Product: GBWP = 300 kHz (typical)
- · Unity Gain Stable
- Extended Temperature Range: -40°C to +125°C
- · Available Package Options:
 - Single Operational Amplifier: MIC333
 - Dual Operational Amplifier: MIC2333
- · Packaging:
 - 5-Lead SC70 (MIC333 only)
 - 5-Lead SOT-23 (MIC333 only)
 - 8-Lead MSOP (MIC2333 only)
- · Automotive Qualified (AEC Q100, Grade 1)

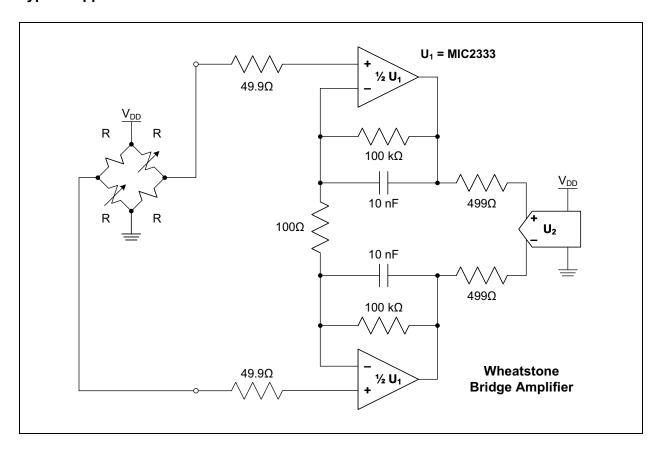
Typical Applications

- · Sensor Conditioning
- · Portable Electronics
- · Medical Instrumentation
- · Temperature Measurement
- · DC Offset Correction
- · Automotive Electronics

Design Aids


- · SPICE Macro Models
- Filterl ab[®] Software
- · Analog Demonstration and Evaluation Boards
- Application Notes

General Description


The MIC333/2333 family of operational amplifiers offers input offset voltage correction at the cost of very low offset and offset drift. These amplifiers are low power devices with a typical gain bandwidth product (GBWP) of 300 kHz. Additionally, they are unity gain stable, without 1/f noise and have good power supply rejection ratio (PSRR) and common mode rejection ratio (CMRR). MIC333/2333 devices operate with a single supply voltage as low as +1.8V, while drawing 23 µA/amplifier (typical) of guiescent current.

Designed using an advanced CMOS process, these zero-drift operational amplifiers are offered in single (MIC333) and dual (MIC2333) packages.

Pin Configuration

Typical Application Circuit

Key Performance Plots

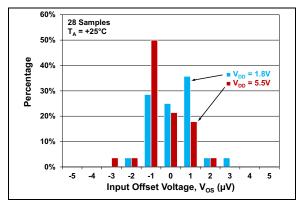


FIGURE 1: Input Offset Voltage.

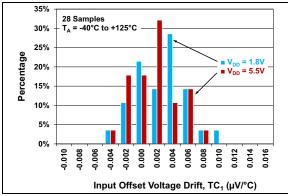
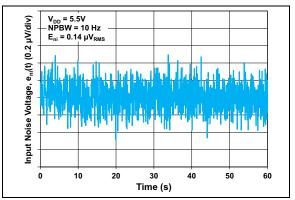



FIGURE 2: Input Offset Voltage Drift.

FIGURE 3: Input Noise vs. Time, 10 Hz Filter and $V_{DD} = 5.5V$.

1.0 ELECTRICAL SPECIFICATIONS

1.1 Absolute Maximum Ratings^(†)

V _{DD} – V _{SS}	
Current at Input Pins	±2 mA
Analog Inputs (V _{IN} + and V _{IN} -) ^(*)	V_{SS} – 1V to V_{DD} + 1V
All Other Inputs and Outputs	$V_{SS} - 0.3V$ to $V_{DD} + 0.3V$
Difference Input Voltage	V _{DD} – V _{SS}
Output Short Circuit Current	Continuous
Current at Output and Supply Pins	±30 mA
Storage Temperature (T _{STG})	65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
Electrostatic Discharge (ESD) Protection on All Pins (HBM, CDM, MM).	≥ 2 kV, 1.5 kV, 400V

[†] **Notice:** Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

1.2 Electrical Characteristics

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Standard Operating Conditions: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to V_L and $C_L = 20 \text{ pF}$ (refer to Figure 1-4 and Figure 1-5). **Symbol Parameter Conditions** Min. **Typical** Max. Units **Power Supply** Supply Voltage V_{DD} 1.8 5.5 ٧ 12 Quiescent Current per 23 34 μΑ $I_O = 0A$ la Amplifier POR Trip Voltage 0.9 V V_{POR} 1.6 **Input Offset** Input Offset Voltage -8 Vos +8 $T_A = +25^{\circ}C$ μV/°C +0.03 $T_A = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Note 1)}$ Input Offset Voltage Linear TC₁ -0.03Temperature Coefficient nV/°C2 $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ Input Offset Voltage Quadratic TC_2 ±0.05 Temperature Coefficient Input Offset Aging ΔV_{OS} 0.14 μV_{RMS} After 408 hours at T_A = +150°C Power Supply Rejection **PSRR** 120 135 dB Input Bias Current and Impedance (Note 2) Input Bias Current +5 pΑ $T_A = +5^{\circ}C$ I_B Input Bias Current across I_B +20 pΑ $T_{\Delta} = +85^{\circ}C$ Temperature $T_{\Delta} = +125^{\circ}C$ I_B 0 +2.9 +5 nΑ $T_A = +5^{\circ}C$ Input Offset Current ±130 pΑ I_{OS} $T_A = +85^{\circ}C$ Input Offset Current across ±140 pΑ I_{OS} Temperature los -1 ±0.4 +1 nΑ $T_A = +125^{\circ}C$

^{*} For more details, see Section 4.2.1, "Rail-to-Rail Inputs".

Note 1: For design guidance only. Not production tested.

^{2:} For more details, see Section 4.3.5, "Input Bias Currents".

^{3:} Figure 2-16 shows how V_{CML} and V_{CMH} change across temperature.

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Standard Operating Conditions: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_{DD}/2$, $V_L = V_{DD}/2$, $V_L = 100$ kΩ to V_L and $C_L = 20$ pF (refer to Figure 1-4 and Figure 1-5).

Parameter	Symbol	Min.	Typical	Max.	Units	Conditions			
Input Bias Current and Impedance (continued)									
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 6	_	Ω pF				
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 6	_	Ω pF				
Common Mode									
Common Mode Input Voltage Range Low	V _{CML}	_	_	V _{SS} – 0.15	V	Note 3			
Common Mode Input Voltage Range High	V _{CMH}	V _{DD} + 0.2	_	_	V	Note 3			
Common Mode Rejection	CMRR	110	125	_	dB	V _{DD} = 1.8V, V _{CM} = -0.15V to +2V (Note 3)			
		120	135	_	dB	V _{DD} = 5.5V, V _{CM} = -0.15V to +5.7V (Note 3)			
Open-Loop Gain									
DC Open-Loop Gain	A _{OL}	103	125	_	dB	V _{DD} = 1.8V, V _{OUT} = +0.3V to +1.6V			
(Large Signal)		120	135	_	dB	$V_{DD} = 5.5V$, $V_{OUT} = +0.3V$ to +5.3V			
Output									
Minimum Output Voltage Swing	V _{OL}	V _{SS}	V _{SS} + 14	V _{SS} + 45	mV	$R_L = 10 \text{ k}\Omega, G = +2,$ 0.5V Input Overdrive			
		_	V _{SS} + 1.4	_	mV	$R_L = 100 \text{ k}\Omega, G = +2,$ 0.5V Input Overdrive			
Maximum Output Voltage Swing	V _{OH}	V _{DD} – 45	V _{DD} – 14	V_{DD}	mV	$R_L = 10 \text{ k}\Omega, G = +2,$ 0.5V Input Overdrive			
		_	V _{DD} – 1.4	_	mV	R_L = 100 kΩ, G = +2, 0.5V Input Overdrive			
Output Short Circuit Current	I _{SC}	_	±6	_	mA	V _{DD} = 1.8V			
		_	±21	_	mA	V _{DD} = 5.5V			

Note 1: For design guidance only. Not production tested.

3: Figure 2-16 shows how V_{CML} and V_{CMH} change across temperature.

^{2:} For more details, see Section 4.3.5, "Input Bias Currents".

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Standard Operating Conditions: Unless otherwise indicated, $T_A = +25$ °C, $V_{DD} = +1.8$ V to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/3$, $V_{OUT} = V_L = V_{DD}/2$, $R_L = 100$ kΩ to V_L and $C_L = 20$ pF (refer to Figure 1-4 and Figure 1-5).

Parameter	Symbol	Min.	Typical	Max.	Units	Conditions				
Amplifier AC Response										
Gain Bandwidth Product	GBWP	_	300	_	kHz					
Slew Rate	SR	_	0.13	_	V/µs					
Phase Margin	PM	_	70	_	0	G = +1				
Amplifier Noise Response										
Input Noise Voltage	E _{ni}	_	0.33	_	μV _{P-P}	f = 0.01 Hz to 1 Hz				
		_	1	_	μV _{P-P}	f = 0.1 Hz to 10 Hz				
Input Noise Voltage Density	e _{ni}	_	50	_	nV/√Hz	f < 2 kHz				
Input Noise Current Density	i _{ni}	_	6.5	_	fA/√Hz					
Amplifier Distortion (Note 1)									
Inter-Modulation Distortion	IMD	_	52	_	μV _{PK}	V_{CM} tone = 50 mV _{PK} at 100 Hz, G_N = +1				
Amplifier Step Response										
Start Up Time	t _{STR}	_	2	_	ms	G = +1, 0.1% V _{OUT} settling (Note 2)				
Offset Correction Settling Time	t _{STL}	_	100	_	μs	G = +1, V _{IN} step of 2V, V _{OS} within 100 μV of its final value				
Offset Overdrive Recovery Time	t _{ODR}	_	120	_	μs	G = -10, \pm 0.5V input overdrive to $V_{DD}/2$, V_{IN} 50% point to V_{OUT} 90% point (Note 3)				

Note 1: These parameters were characterized using the circuit shown in Figure 1-6. In Figure 2-29 and Figure 2-30, there is an inter-modulation distortion (IMD) tone at DC, a residual tone at 100 Hz and other IMD tones and clock tones.

TABLE 1-3: TEMPERATURE SPECIFICATIONS

Standard Operating Conditions: Unless otherwise indicated,								
Parameter	Symbol	Min.	Typical	Max.	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40	_	+125	°C			
Operating Temperature Range	T _{OP}	-40	_	+125	°C	Note 1		
Storage Temperature Range	T _{STG}	-65	_	+150	°C			
Junction-to-Ambient Thermal Package Resistance	ces							
Thermal Resistance: 5-Lead SC70	θ_{JA}	_	331	_	°C/W			
Thermal Resistance: 5-Lead SOT-23	θ_{JA}	_	256	_	°C/W			
Thermal Resistance: 8-Lead MSOP	θ_{JA}	_	211		°C/W			

Note 1: Operation must not cause T_J to exceed the specified Maximum Junction Temperature (+150°C).

^{2:} High gains behave differently. For more details, see Section 4.3.3, "Offset at Power-up".

^{3:} t_{ODR} includes some uncertainty due to clock edge timing.

1.3 Timing Diagrams

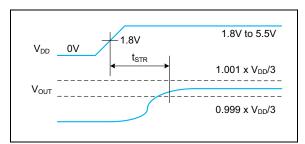


FIGURE 1-1: Amplifier Start-up.

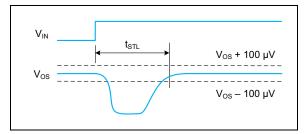
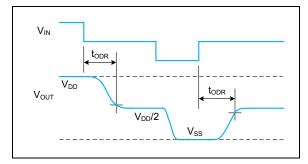
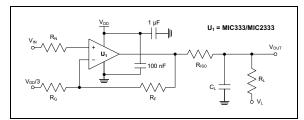
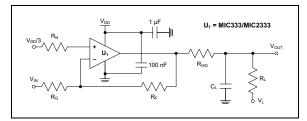


FIGURE 1-2: Offset Correction Settling Time.


FIGURE 1-3: Output Overdrive Recovery.

1.4 Test Circuits

Figure 1-4 and Figure 1-5 show the circuits used for most DC and AC tests. Locate the bypass capacitors as detailed in **Section 4.3.10**, "Supply Bypassing and Filtering". To minimize bias current effects, resistor R_N must be equal to the parallel equivalent of resistors R_F and R_G : $1/R_N = 1/R_F + 1/R_G$.

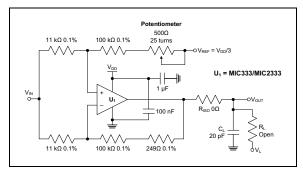

FIGURE 1-4: AC and DC Test Circuit for Most Noninverting Gain Conditions.

FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions.

The circuit shown in Figure 1-6 tests the dynamic behavior of the input: inter-modulation distortion (IMD), start-up time (t_{STR}), offset correction settling time (t_{STL}) and output overdrive recovery time (t_{ODR}).

The potentiometer balances the resistor network: V_{OUT} must equal V_{REF} at DC. The common mode input voltage of the operational amplifier is $V_{CM} = V_{IN}/2$. The error at the input (V_{ERR}) appears at V_{OUT} with a noise gain of 10 V/V.

FIGURE 1-6: Test Circuit for Dynamic Input Behavior.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (for example, outside specified power supply range) and therefore outside the warranted range.

2.1 DC Input Precision

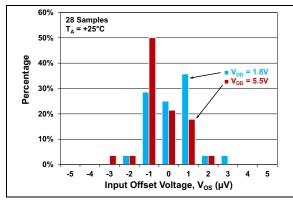


FIGURE 2-1: Input Offset Voltage.

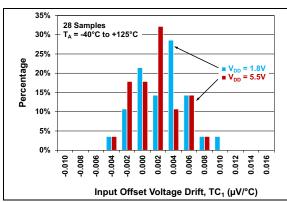
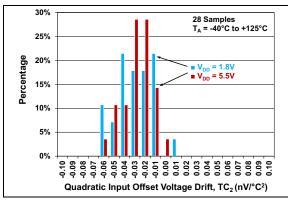



FIGURE 2-2: Input Offset Voltage Drift.

FIGURE 2-3: Input Offset Voltage Quadratic Temperature Coefficient.

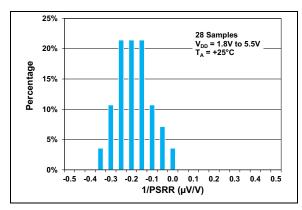
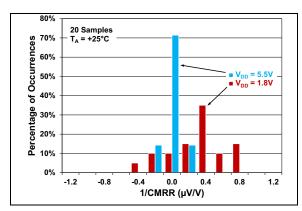
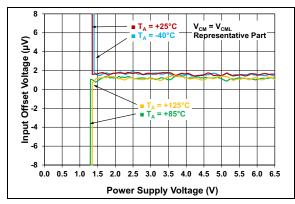
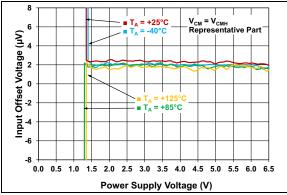
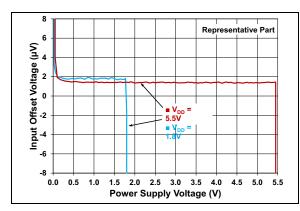
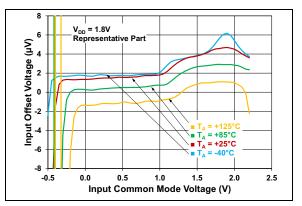


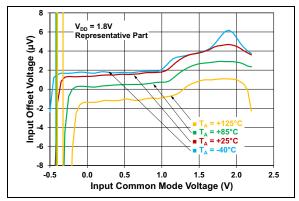
FIGURE 2-4: Power Supply Rejection Ratio.


FIGURE 2-5: Common Mode Rejection Ratio.


FIGURE 2-6: DC Open-Loop Gain.


FIGURE 2-7: Input Offset Voltage vs. Power Supply Voltage, $V_{CM} = V_{CML}$.


FIGURE 2-8: Input Offset Voltage vs. Power Supply Voltage, $V_{CM} = V_{CMH}$.

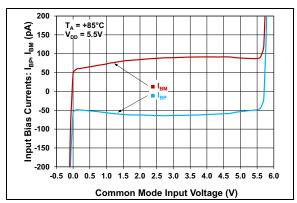

FIGURE 2-9: Input Offset Voltage vs. Output Voltage.

FIGURE 2-10: Input Offset Voltage vs. Common Mode Voltage, $V_{DD} = 1.8V$.

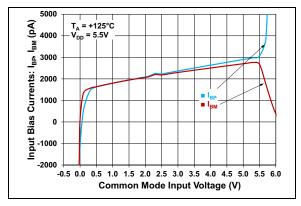


FIGURE 2-11: Input Offset Voltage vs. Common Mode Voltage, $V_{DD} = 5.5V$.

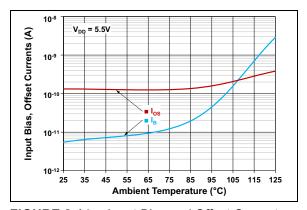


FIGURE 2-12: Noninverting and Inverting Input Bias Currents vs. Common Mode Input Voltage, $T_A = +85$ °C.

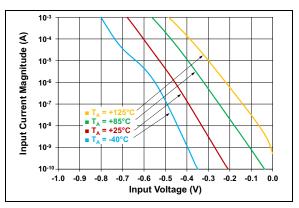

MIC333/2333

FIGURE 2-13: Noninverting and Inverting Input Bias Currents vs. Common Mode Input Voltage, $T_A = +125$ °C.

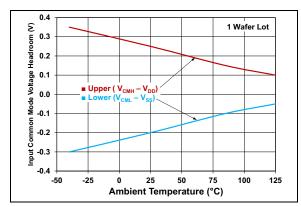


FIGURE 2-14: Input Bias and Offset Currents vs. Ambient Temperature, $V_{DD} = +5.5V$.

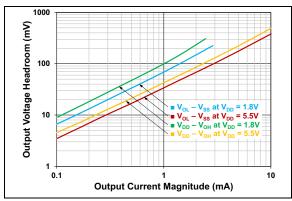
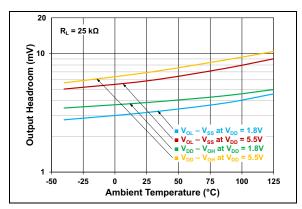
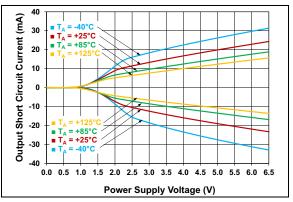


FIGURE 2-15: Input Bias Current vs. Input Voltage (below V_{SS}).


2.2 Other DC Voltages and Currents


FIGURE 2-16: Input Common Mode Voltage Headroom (Range) vs. Ambient Temperature.

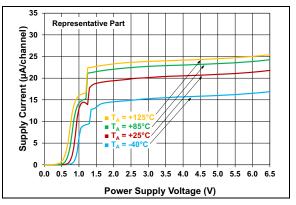

FIGURE 2-17: Output Voltage Headroom vs. Output Current.

FIGURE 2-18: Output Voltage Headroom vs. Ambient Temperature.

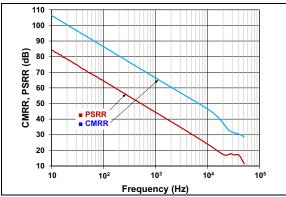


FIGURE 2-19: Output Short Circuit Current vs. Power Supply Voltage.

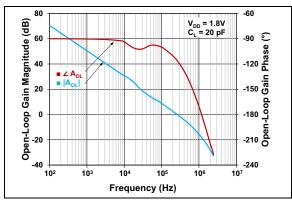
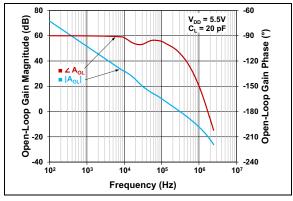
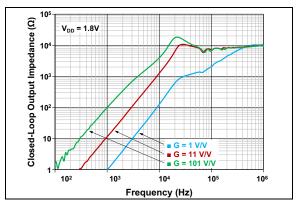
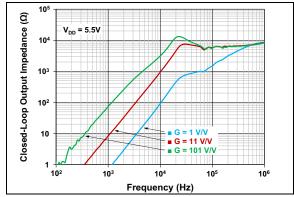
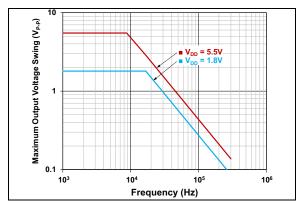


FIGURE 2-20: Supply Current vs. Power Supply Voltage.


2.3 Frequency Response


FIGURE 2-21: CMRR and PSRR vs. Frequency.


FIGURE 2-22: Open-Loop Gain vs. Frequency, $V_{DD} = 1.8V$.


FIGURE 2-23: Open-Loop Gain vs. Frequency, $V_{DD} = 5.5V$.

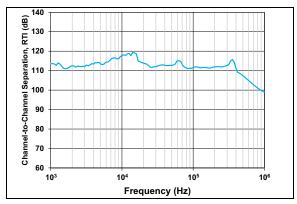

FIGURE 2-24: Closed-Loop Output Impedance vs. Frequency, $V_{DD} = 1.8V$.

FIGURE 2-25: Closed-Loop Output Impedance vs. Frequency, $V_{DD} = 5.5V$.

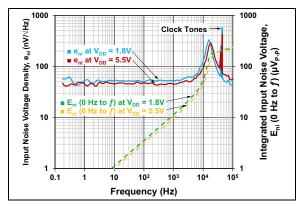


FIGURE 2-26: *Maximum Output Voltage Swing vs. Frequency.*

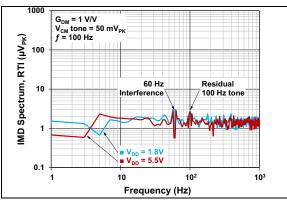
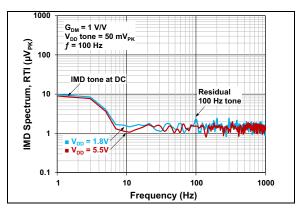
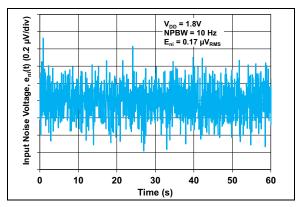


FIGURE 2-27: Channel-to-Channel Separation vs. Frequency.


2.4 Input Noise and Distortion


FIGURE 2-28: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency.

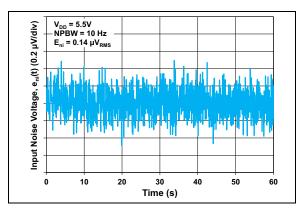

FIGURE 2-29: Inter-Modulation Distortion vs. Frequency, V_{CM} Disturbance (see Figure 1-6).

FIGURE 2-30: Inter-Modulation Distortion vs. Frequency, V_{DD} Disturbance (see Figure 1-6).

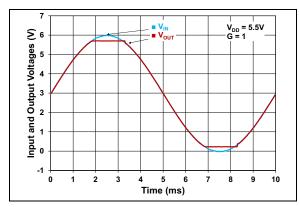


FIGURE 2-31: Input Noise vs. Time, 10 Hz Filter and $V_{DD} = 1.8V$.

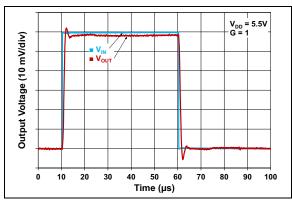
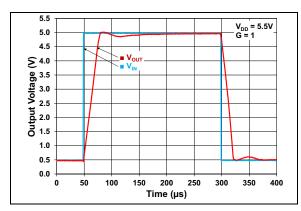
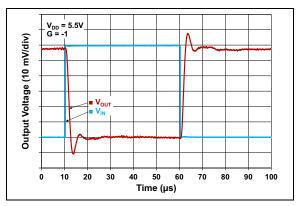
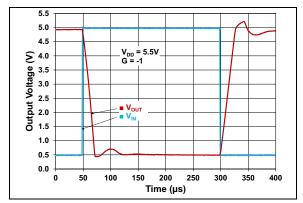


FIGURE 2-32: Input Noise vs. Time, 10 Hz Filter and $V_{DD} = 5.5V$.


2.5 Time Response


FIGURE 2-33: MIC333/2333 Shows No Input Phase Reversal with Overdrive.


FIGURE 2-34: Noninverting Small Signal Step Response.

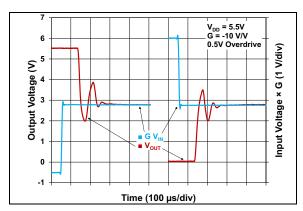

FIGURE 2-35: Noninverting Large Signal Step Response.

FIGURE 2-36: Inverting Small Signal Step Response.

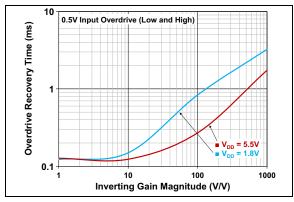


FIGURE 2-37: Inverting Large Signal Step Response.

FIGURE 2-38: Output Overdrive Recovery vs. Time, G = -10 V/V.

MIC333/2333

FIGURE 2-39: Output Overdrive Recovery Time vs. Inverting Gain.

3.0 PIN DESCRIPTION

The pins of MIC333/2333 are described in Table 3-1.

TABLE 3-1: MIC333 PIN DESCRIPTIONS

MIC	333	MIC2333	Symbol	Description			
SOT-23	SC70	MSOP	Symbol	Description			
1	4	1	V _{OUT} /V _{OUTA}	Output of Operational Amplifier A			
2	2	4	V _{SS}	Negative Power Supply			
3	1	3	V _{IN} +/V _{INA} +	Noninverting Input of Operational Amplifier A			
4	3	2	V _{IN} -/V _{INA} — Inverting Input of Operational Amplifier A				
5	5	8	V _{DD}	Positive Power Supply			
_	_	5	V _{INB} +	Noninverting Input of Operational Amplifier B			
_	_	6	V _{INB} -	Inverting Input of Operational Amplifier B			
_	_	7	V _{OUTB}	Output of Operational Amplifier B			

3.1 Analog Outputs (V_{OUT} , V_{OUTA} , V_{OUTB})

These pins are low impedance voltage sources.

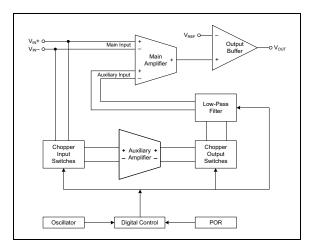
3.2 Analog Inputs (V_{IN}+, V_{IN}-, V_{INA}+, V_{INA}-, V_{INB}+, V_{INB}-)

These inverting and noninverting pins are high impedance CMOS inputs with low bias currents.

3.3 Power Supply Pins (V_{DD}, V_{SS})

The positive power supply (V_{DD}) is between +1.8V to +5.5V higher than the negative power supply (V_{SS}). For normal operations, all other pins are between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} connects to GND and V_{DD} connects to the power supply.


Note: V_{DD} requires bypass capacitors.

4.0 APPLICATIONS

Manufactured using an advanced CMOS process, the MIC333/2333 family of zero-drift operational amplifiers is designed for precision applications that require small packages and low power. Their low supply voltage and low quiescent current make these devices ideal for battery-powered applications.

4.1 Overview of Zero-Drift Operation

Figure 4-1 shows a simplified functional diagram of MIC333/2333. The architecture shown in this diagram reduces slow voltage errors, resulting in much better V_{OS} , TC_1 , TC_2 , CMRR, PSRR, A_{OL} and 1/f noise.

FIGURE 4-1: Simplified Zero-Drift Operational Amplifier Functional Diagram.

4.1.1 BUILDING BLOCKS

The Main Amplifier is designed for high bandwidth and gain. Its main input is for high frequency signals, while the auxiliary input is for low frequency signals. Both sets of inputs are combined internally.

The Auxiliary Amplifier together with the Chopper Switches provide high gain to low frequency signals. DC errors and low frequency noise are modulated to higher frequencies and filtered out. The low frequency signal is then modulated back to its frequency band. High frequency white noise is also modulated to low frequency, providing better performance than autozeroed parts. The Low-Pass Filter reduces Chopping Clock harmonics.

The Output Buffer drives external loads at V_{OUT} (V_{REF} is an internal reference voltage).

The Oscillator runs at 200 kHz and is halved, producing a Chopping Clock rate of 100 kHz and low level output clock tones at 50 kHz (Figure 2-28).

The internal POR component starts MIC333/2333 in a well-known state that protects the device against power supply brown-outs. The Digital Control component manages switching and POR events.

4.1.2 INTER-MODULATION DISTORTION

When an AC signal is present, MIC333/2333 shows low level inter-modulation distortion (IMD) products. For more details, see Figure 2-29 and Figure 2-30.

The signal and clock can be decomposed into sine wave tones (Fourier series components). These tones interact with the nonlinear response of the zero-drift circuitry to produce IMD tones at sum and difference frequencies. Each harmonic of the square wave clock has a set of IMD tones centered on it.

4.2 Other Functional Blocks

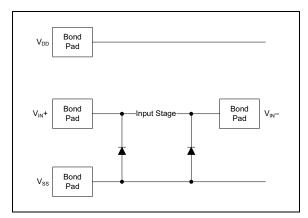
4.2.1 RAIL-TO-RAIL INPUTS

The input stages of MIC333/2333 use two CMOS differential pairs connected in parallel. A pair operates at low common mode input voltage (V_{CM} close to V_{IN}+ and V_{IN}- in normal operation), while the other at high V_{CM}. At +25°C, the input operates with V_{CM} between V_{SS} - 0.15V and V_{DD} + 0.2V (Figure 2-16). The input offset voltage, V_{OS}, is measured at V_{CM} = V_{SS} - 0.15V and V_{CM} = V_{DD} + 0.2V to ensure proper operation.

The transition between the input stages occurs when $V_{CM} \approx V_{DD} - 0.9V$ (Figure 2-10 and Figure 2-11).

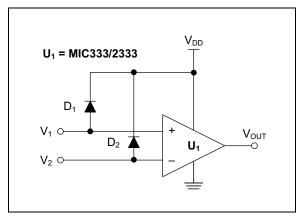
4.2.1.1 Phase Reversal

Input devices do not exhibit phase reversal when voltages on the input pins exceed supply voltages. Figure 2-33 shows an input voltage exceeding both supplies with no phase reversal.


4.2.1.2 Input Voltage Limits

To prevent damage and/or improper operation of MIC333/2333, the circuit must limit voltages at the input pins (Section 1.1, "Absolute Maximum Ratings(†)").

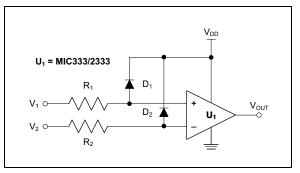
Note: This requirement is independent of the current limits detailed in Section 4.2.1.3, "Input Current Limits".


Electrostatic discharge (ESD) protection on the inputs can be implemented as shown in Figure 4-2. This structure protects the input transistors against most, but not all overvoltage conditions and minimizes the input bias current, $I_{\rm B}$.

The input ESD diodes clamp the operational amplifier inputs when the pins drop more than one diode below V_{SS} . The input ESD diodes also clamp any voltages that exceed V_{DD} . Their breakdown voltage is high enough to allow normal operation, but not low enough to protect against slow overvoltage (beyond V_{DD}) events. Very fast ESD events (that do not exceed the ESD specifications) are limited to prevent damage.

FIGURE 4-2: Simplified Analog Input ESD Structures.

Some applications require excessive voltages not reach the inputs of the operational amplifier. Figure 4-3 shows one approach to protect these inputs. D_1 and D_2 can be small signal silicon diodes, Schottky diodes for lower clamping voltages or diode connected field-effect transistors (FETs) for low leakage.


FIGURE 4-3: Protecting the Analog Inputs Against High Voltages.

4.2.1.3 Input Current Limits

To prevent damage and/or improper operation of MIC333/2333, the circuit must limit currents at the input pins (Section 1.1, "Absolute Maximum Ratings(†)").

Note: This requirement is independent of the voltage limits detailed in Section 4.2.1.2, "Input Voltage Limits".

Figure 4-4 shows one approach to protect the inputs of the operational amplifier. Resistors R_1 and R_2 limit the possible current in or out of the input pins (and into diodes D_1 and D_2). The diode currents dump into V_{DD} .

FIGURE 4-4: Protecting the Analog Inputs Against High Currents.

Should this be "Equation 4-1:"?

EQUATION 4-1:

$$min(R_1,R_2) > \frac{V_{SS} - min(V_1,V_2)}{2mA}$$

$$min(R_1,R_2) > \frac{max(V_1,V_2) - V_{DD}}{2mA}$$

Instead of connecting between resistors R_1 and R_2 and the operational amplifier inputs as shown in Figure 4-4, diodes D_1 and D_2 can connect between V_1 and R_1 and between V_2 and R_2 , respectively. In such configurations, limit the currents through diodes D_1 and D_2 using other mechanisms. Resistors R_1 and R_2 serve as in-rush current limiters: DC current into the operational amplifier inputs (V_{IN} + and V_{IN} -) is very small.

Note: A significant amount of current can flow out of the inputs (through the ESD diodes) when the common mode voltage (V_{CM}) is below ground (V_{SS}). See Figure 2-15.

4.2.2 RAIL-TO-RAIL OUTPUT

When R_L = 10 $k\Omega$ connects to $V_{DD}/2$ and V_{DD} = 5.5V, the output voltage of MIC333/2333 is V_{DD} – 20 mV at minimum and V_{SS} + 20 mV at maximum. For more details, see Figure 2-17 and Figure 2-18.

Note: MIC333/2333 is designed to drive light loads. Use a second operational amplifier to buffer its output from heavy loads.

4.3 Application Tips

4.3.1 INPUT OFFSET VOLTAGE OVER TEMPERATURE

Table 1-1, "DC Electrical Specifications" shows the temperature coefficients (TC_1 and TC_2) of the input offset voltage, V_{OS} . Use Equation 4-2 to determine V_{OS} at any temperature, when in the specified range.

EQUATION 4-2:

 $V_{OS}(T_A) = V_{OS} + TC_1 \times \Delta T + TC_2 \times \Delta T^2$

Where:

 V_{OS} = Input Offset Voltage (μ V)

 T_A = Ambient Temperature (°C)

 TC_I = Linear Temperature Coefficient (μ V/°C)

 TC_2 = Quadratic Temperature Coefficient (nV/°C²)

 $\Delta T = T_A - 25^{\circ}C (^{\circ}C)$

4.3.2 DC GAIN PLOTS

Figure 2-4 through Figure 2-6 are histograms of the reciprocals of the Power Supply Rejection (PSRR), Common-Mode Rejection (CMRR) and DC Open-Loop Gain (A_{OL}), presented in units of μ V/V. These figures show the changes in common mode input voltage (V_{CM}), power supply voltage (V_{DD}) and output voltage (V_{OUT}) that result when a change input offset voltage occurs

In Figure 2-6, the $1/A_{OL}$ histogram is centered around 0 μ V/V since the input noise of the operational amplifier dominates the measurements. The negative values shown represent noise and tester limitations and *not* unstable behavior. Production tests verify the stability of every MIC333 and MIC2333 operational amplifier.

4.3.3 OFFSET AT POWER-UP

When MIC333/2333 powers up, V_{OS} starts at its uncorrected value (usually between -5 mV and +5 mV). Circuits with high DC gain can cause the output to reach one of the two rails. In this case, the time required to reach a valid output is delayed by an output overdrive recovery time (t_{ODR}), in addition to the startup time (t_{STR}).

To avoid this extra start-up time, reduce the DC gain or connect a capacitor across the feedback resistor, $R_{\rm F}$.

4.3.4 V_{CM} TRANSITION

 V_{CM} transition is not an issue present in most designs using MIC333/2333. For the best distortion and gain linearity, avoid this transition region by shifting V_{CM} with higher noninverting and difference gains or by using inverting gains.

4.3.5 INPUT BIAS CURRENTS

Input bias currents have two significant sources: switching glitches that dominate below +105°C and input ESD diode leakage currents that dominate above +105°C. See Figure 2-14.

Input bias currents at the noninverting input (I_{BP} at V_{IN} +) and the inverting input (I_{BM} at V_{IN} -) are positive when they flow into the inputs. Figure 2-12 and Figure 2-13 show how I_{BP} and I_{BM} vary with V_{CM} and T_A .

The traditional representation of input bias currents is calculated using Equation 4-3.

EQUATION 4-3:

$$I_B = \frac{I_{BP} + I_{BM}}{2} \qquad I_{OS} = I_{BP} - I_{BM}$$

Where:

 I_B = Input Bias Current (pA)

 I_{BP} = Noninverting Input Bias Current (pA)

 I_{BM} = Inverting Input Bias Current (pA)

 I_{OS} = Input Offset Current (pA)

Table 1-1, "DC Electrical Specifications" specifies I_B and I_{OS} . Figure 2-14 shows how I_B and I_{OS} vary with V_{CM} and T_A . I_{OS} remains constant at low temperatures, because switching glitches dominate under +105°C.

Use Equation 4-4 to convert I_B and I_{OS} back to I_{BP} and I_{RM} .

EQUATION 4-4:

$$I_{BP} = I_B + \frac{I_{OS}}{2}$$
 $I_{BM} = I_B - \frac{I_{OS}}{2}$

Where:

 I_{RP} = Noninverting Input Bias Current (pA)

 I_B = Input Bias Current (pA)

 I_{OS} = Input Offset Current (pA)

 I_{BM} = Inverting Input Bias Current (pA)

4.3.6 EQUIVALENT INPUT RESISTANCES

In Figure 4-5, the noninverting operational amplifier input connects to resistor R_N , while the inverting input connects to resistor $R_F||R_G$. For both connections, the resistances are from the input pins, through resistors to the voltage sources.

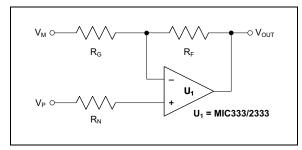


FIGURE 4-5: Input Resistances.

To determine the DC voltage error (V_{ERR}) measured at V_{OLIT} , use Equation 4-5.

EQUATION 4-5:

$$\begin{split} V_{ERR} &= I_{BM} \times R_F - I_{BP} \times R_N \bigg(1 + \frac{R_F}{R_G} \bigg) \\ &= I_{BM} \times R_F \bigg(1 - \frac{R_N}{R_F \parallel R_C} \bigg) - I_{OS} \times R_F \bigg(1 + \frac{R_N}{R_F \parallel R_C} \bigg) \end{split}$$

Where:

 V_{ERR} = DC Voltage Error (mV)

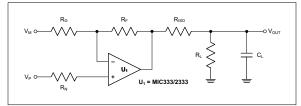
 I_{BM} = Inverting Input Bias Current (pA)

 R_F = Feedback Resistance (Ω)

 I_{BP} = Noninverting Input Bias Current (pA)

 R_N = Noise Resistance (Ω) R_G = Gain Resistance (Ω)

 I_{OS} = Input Offset Current (pA)


To minimize V_{ERR} at all temperatures, the resistances connected to the operational amplifier inputs must be small. To minimize V_{ERR} at high temperatures, these resistances must also be equal, besides being small.

For high frequencies (f > 1 MHz), ensure the inputs are connected to resistances between 10Ω and 1 k Ω . This minimizes the impact of very fast switching glitches on overall performance.

4.3.7 CAPACITIVE LOADS

Driving large capacitive loads can cause stability issues for operational amplifiers. This produces gain peaking in the frequency response and overshoot and ringing in the step response.

Due to their unique topology, MIC333/2333 operational amplifiers have a different output impedance compared to similar devices. When driving a capacitive load with these operational amplifiers, $R_{\rm ISO}$ (as shown in Figure 4-6) improves the stability of the feedback loop by making the output load more resistive at higher frequencies.

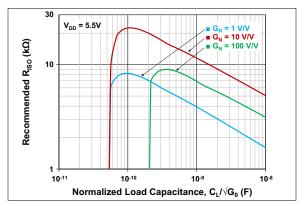
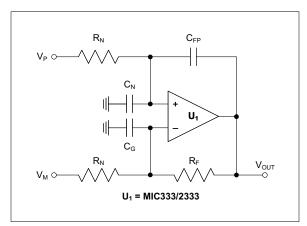


FIGURE 4-6: R_{ISO} – Output Resistor, Stabilizes Capacitive Loads.

The noise gain (G_N) of the circuit is usually set by R_F and R_G (see Figure 4-6):

- For noninverting gains, G_N = Signal Gain.
- For inverting gains, G_N = 1 + |Signal Gain|.
 For example, -1 V/V results in G_N = +2 V/V.

Figure 4-7 shows the recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the load capacitance normalized by $\sqrt{G_N}$ (C_L/ $\sqrt{G_N}$) and the y-axis is the recommended R_{ISO}.


FIGURE 4-7: Recommended R_{ISO} Values for Capacitive Loads.

For best performance, maintain $R_L || (R_F + R_G) >> R_{ISO}$, but not too large. For guidance, see **Section 4.3.8**, **"Gain Peaking"**.

After selecting an appropriate $R_{\rm ISO}$ value for the circuit, verify the resulting frequency response peaking and step response overshoot using simulations and bench measurements. Adjust the value of $R_{\rm ISO}$ until the response is reasonable.

4.3.8 GAIN PEAKING

Figure 4-8 shows an operational amplifier circuit where V_P and V_M can be dynamic inputs or DC voltages. This circuit depicts noninverting, inverting and difference amplifiers. Capacitors C_N and C_G are the total capacitance at the input pins and include the common mode input capacitance (C_{CM}) of the operational amplifier, parasitic board capacitance and any parallel capacitor. Capacitor C_{FP} represents the parasitic capacitance coupling the output and noninverting input pins.

FIGURE 4-8: Operational Amplifier with Parasitic Capacitance.

MIC333/2333

Capacitor C_G acts in parallel with resistor R_G (except at a gain of +1 V/V). This can cause an increase in gain at high frequencies. C_G also reduces the phase margin of the feedback loop, which becomes less stable. To minimize this effect either:

- Reduce C_G
- Reduce R_F||R_G or
- Place a capacitor C_F in parallel with R_F, ensuring that 1 + C_G/C_F = 1 + R_F/R_G.

Capacitor C_N and resistor R_N form a low-pass filter that affects the signal at V_P . This filter has a single real pole at $1/(2\pi \cdot R_N \cdot C_N)$. At high gains, R_N must be small to prevent positive feedback and oscillations. Larger C_N values also help.

4.3.9 NOISE AND UNDESIRED SIGNALS

Reduce undesired noise and signals using:

- · Low bandwidth signal filters:
 - For random analog noise and interference
- · Good printed circuit board (PCB) layout techniques:
 - For crosstalk
 - For low interactions with fast switching edges
- · Good power supply design:
 - For isolation from other devices
 - For supply line interference

To significantly improve the noise peak and clock tones shown in Figure 2-28, use a two pole low-pass filter with a bandwidth under 5 kHz (see Figure 4-12 for an example circuit).

The input noise current density (i_{ni} in Table 1-2, "AC Electrical Specifications") is negligible for applications using MIC333/2333 devices to amplify small signals. Any input resistance big enough to make i_{ni} noticeable also causes very large input offset shifts due to input currents.

4.3.10 SUPPLY BYPASSING AND FILTERING

For good high frequency performance, MIC333/2333 has a local bypass capacitor (0.01 μ F to 0.1 μ F) within 2 mm of the power supply pin (V_{DD} for single supply). The device also requires a bulk capacitor (\geq 1 μ F) within 20 mm to provide large, slow currents. Usually, this bulk capacitor is not shared with other devices.

In some cases, high frequency power supply noise (for example, switched mode power supplies) may cause undue IMD, with a DC offset shift. Filter this noise. Adding a resistor or a ferrite chip in the supply line before the bypass capacitors can help.

4.3.11 PCB DESIGN FOR PRECISION

To achieve the specified DC precision, multiple physical errors must be minimized. The PCB, the wiring and the thermal environment strongly impact final performance.

4.3.11.1 PCB Layout

Whenever two dissimilar metals are joined together, a temperature dependent voltage appears across the junction (Seebeck or thermojunction effect). While this effect is used to measure the temperature in thermocouples, it causes errors in high DC precision designs. The following are examples of thermojunctions:

- Components (resistors, operational amplifier etc.) soldered to a copper pad
- · Wires connected to the PCB
- · Jumpers
- · Solder joints
- · PCB vias

Typical thermojunctions have temperature-to-voltage conversion coefficients of 1 to 100 μ V/°C.

Mechanical connections of any two metal objects add contact potential errors to a design.

Note:

For in-depth information on PCB layout techniques that minimize thermojunction effects, refer to the following Microchip Application Note: AN1258, "Operational Amplifier Precision Design: PCB Layout Techniques". It also covers other effects, such as crosstalk, impedances, humidity and mechanical stresses.

4.3.11.2 Crosstalk

DC crosstalk causes offsets that appear as a larger input offset voltage. Common causes include:

- · Common mode noise (remote sensors)
- · Ground loops (current return paths)
- · Power supply coupling

Interference from the mains (usually 50 Hz or 60 Hz), and other AC sources can affect DC performance. Nonlinear distortion converts these signals to multiple tones, including a DC shift in voltage. When an ADC samples the signal, these AC signals can also be aliased to DC, causing an apparent shift in offset.

To reduce interference:

- · Keep traces and wires as short as possible
- · Use shielding
- Use a ground plane (or a star ground where necessary)
- Place the input signal source near the device under test (DUT)
- · Use good PCB layout techniques
- · Use a separate power supply filter

4.3.11.3 Miscellaneous Effects

To minimize bias current related offsets, resistances connected to the input pins must be as small and as near to equal as possible.

Trace capacitances connected to the input pins must be small and equal. This helps minimize offset voltages induced by switching glitches.

Bending a coaxial cable with a radius that is too small causes a small voltage drop to appear on the center conductor (triboelectric effect). Ensure the bending radius is large enough to maintain full contact between the conductors and the insulation.

Mechanical stresses can make some capacitor types (such as certain ceramics) output small voltages. Use more appropriate capacitor types in the signal path and minimize mechanical stresses and vibration.

Humidity can cause electrochemical potential voltages to appear in a circuit. Proper PCB cleaning helps, as does the use of encapsulants.

4.4 Typical Applications

4.4.1 WHEATSTONE BRIDGE

Many sensors like strain gauges, pressure sensors and thermal sensors like resistance temperature detectors (RTDs) are configured as Wheatstone bridges. The signal is differential and small, while the common mode errors can be large. Designs with high differential gain are desirable.

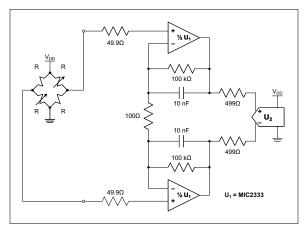
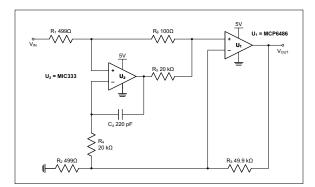


FIGURE 4-9: Wheatstone Bridge Circuit.


Figure 4-9 shows the dual MIC2333 configured as a differential input and differential output operational amplifier. Its high input impedances minimize loading errors at the bridge and produce a differential gain of +2001 V/V, which is appropriate for small differential signals. The capacitors set a 16 kHz low-pass pole for the signal.

Note:

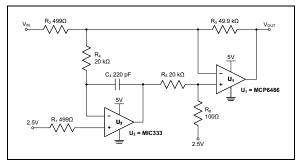
Since the amplifier has a 0 dB CMRR, use an ADC with differential input (U_2) to provide good overall CMRR. Ensure to drive both the bridge and the ADC using the same clean voltage (V_{DD}).

4.4.2 NONINVERTING AMPLIFIER

Figure 4-10 shows MIC333 (U_2) correcting the input offset voltage of an noninverting amplifier (U_1 , R_1 , R_2 and R_3).

FIGURE 4-10: Noninverting Amplifier Offset Correction.

 U_2 , R_4 and C_4 integrate the offset error encountered at the input of U_1 . This integration process must be slow enough to stabilize for the noise gain set by resistors R_2 and R_3 (see Section 4.3.7, "Capacitive Loads").


Resistors R_5 and R_6 attenuate the integrator's output. These resistances slow the integration process, limit the correction at U_1 and reduce the high frequency errors from U_2 (including noise). The correction loop forces the inverting input of U_1 closer to V_{IN} .

 U_1 , R_2 and R_3 provide a noninverting signal gain of +101 V/V and a bandwidth of 90 kHz. The correction voltage at the noninverting input of U_1 is ±12 mV and prevents overdriving U_1 . This attenuation also slows the offset correction loop by a factor of 201.

The integrator reaches a gain of +1 V/V at 36 kHz. This results in the offset correction loop to reach a gain of +1 V/V at 180 Hz and $\rm U_2$ dominating $\rm U_1$'s input errors below 180 Hz.

4.4.3 INVERTING AMPLIFIER OFFSET CORRECTION

Figure 4-11 shows MIC333 (U_2) correcting the input offset voltage of an inverting amplifier (U_1 , R_1 and R_3).

FIGURE 4-11: *Inverting Amplifier Offset Correction.*

The operation of the inverting amplifier offset correction circuit is similar to the operation of the circuit in Figure 4-10. The main difference is that the mid-supply reference voltage (+2.5V) drives the noninverting input of U_2 and resistor R_6 (part of the attenuator). Therefore, the correction loop forces the inverting input of U_1 closer to 2.5V, instead of closer to V_{IN} .

4.4.4 PREAMPLIFIER

Figure 4-12 shows MIC333 operating as a preamplifier. The gain is +500 V/V and the dominant low-pass poles are at 320 Hz and 1.6 kHz. There poles greatly reduce the output noise (Figure 2-28) and undesired signals.

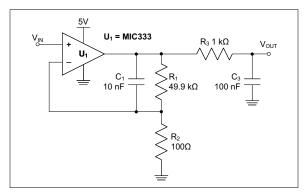
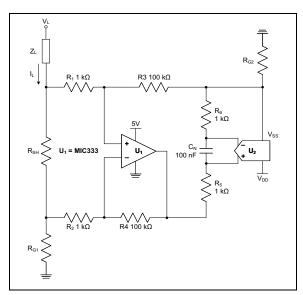


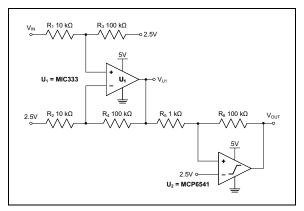
FIGURE 4-12: Preamplifier.

U₁, C₁, R₁ and R₂ set an operational amplifier gain of zero at 160 kHz (and a pole near 300 kHz), where the signal gain approaches +1 V/V. This pole is significantly smaller than U1's gain bandwidth product (GBWP) of 300 kHz, resulting in a very stable operational amplifier.

4.4.5 LOW-SIDE CURRENT MONITOR

Figure 4-13 shows a low-side current monitor with a gain of +100 V/V and a low-pass filter pole at 0.8 kHz. Z_L is the load and R_{SH} is the shunt resistor.




FIGURE 4-13: Low-Side Current Monitor.

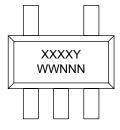
 R_{G1} and R_{G2} are parasitic ground resistances that produce different reference voltages at R_{SH} and at the inverting input of U_2 when currents flow through these components. R_{G1} must be placed near Z_L , R_{SH} and the inputs of U_1 . R_{G2} must be placed near the reference voltage point for both R_3 and the inverting input of U_2 .

To minimize crosstalk caused by R_{G1} and R_{G2} , keep traces short and wide, keep the path for I_L away from U_2 and use a solid ground plane in the PCB.

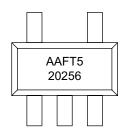
4.4.6 PRECISION NONINVERTING COMPARATOR

Figure 4-14 shows MIC333 used as an operational amplifier (U_1) to provide a very low DC offset and high difference gain, increasing the overall device precision. U_2 behaves as the comparator.

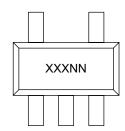
FIGURE 4-14: Precision Noninverting Comparator.

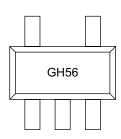

 $\rm U_1$ has a difference gain of +10 V/V, from $\rm V_{IN}-2.5V$ to $\rm V_{U1}-2.5V$. Resistors $\rm R_5$ and $\rm R_6$ increase hysteresis at $\rm V_{U1}$ by 5 mV to ~8 mV. The total hysteresis referred back to $\rm V_{IN}$ is ~0.8 mV.

Because the internal $V_{\rm OS}$ correction circuitry does not operate properly without an appropriate negative feedback loop, MIC333 cannot behave as a comparator by itself.


5.0 PACKAGE INFORMATION

5.1 Package Marking Information


5-Lead SOT-23 (MIC333 only)


Example:

5-Lead SC70 (MIC333 only)

Example:

8-Lead MSOP (MIC2333 only)

Example:

Legend: XX...X Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

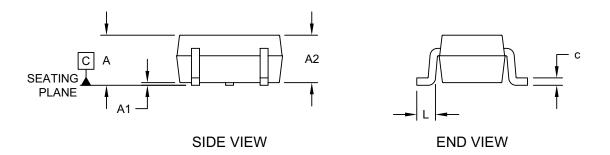
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3)

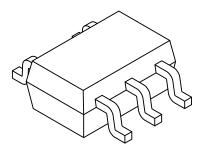
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.


5.2 **Package Drawings**

5-Lead Plastic Small Outline Transistor (LTY) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


TOP VIEW

Microchip Technology Drawing C04-061-LTY Rev E Sheet 1 of 2

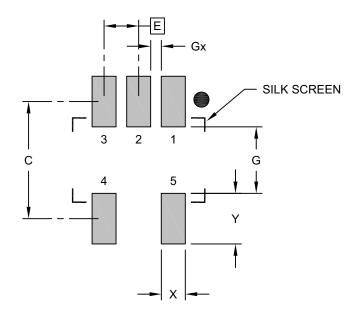
5-Lead Plastic Small Outline Transistor (LTY) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		5	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	-	1.10
Standoff	A1	0.00 - 0.10		
Molded Package Thickness	A2	0.80	-	1.00
Overall Length	D		2.00 BSC	
Overall Width	Е		2.10 BSC	
Molded Package Width	E1	1.25 BSC		
Terminal Width	b	0.15 - 0.40		
Terminal Length	L	0.10	0.20	0.46
Lead Thickness	С	0.08	-	0.26

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-061-LTY Rev E Sheet 2 of 2

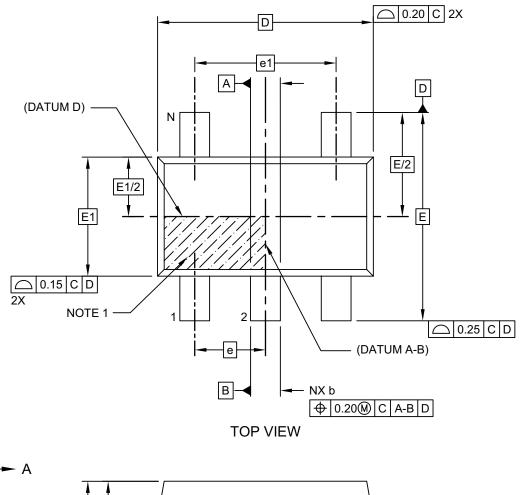
5-Lead Plastic Small Outline Transistor (LTY) [SC70]

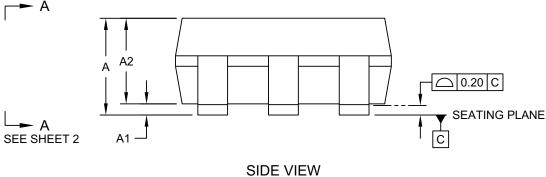
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		2.20		
Contact Pad Width	Х			0.45	
Contact Pad Length	Υ			0.95	
Distance Between Pads	G	1.25			
Distance Between Pads	Gx	0.20			

Notes:

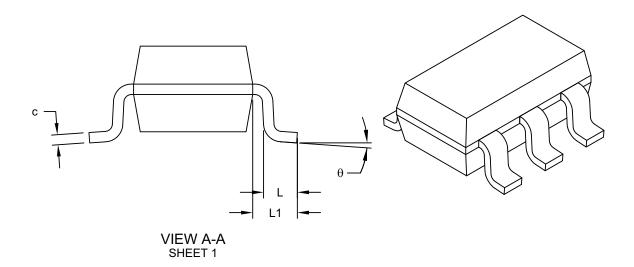

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2061-LTY Rev E

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-091-OT Rev H Sheet 1 of 2

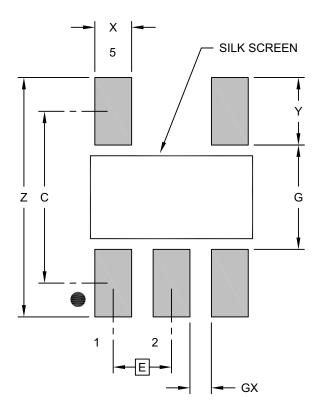
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Number of Pins	N		5	
Pitch	е		0.95 BSC	
Outside lead pitch	e1		1.90 BSC	
Overall Height	Α	0.90	-	1.45
Molded Package Thickness	A2	0.89	-	1.30
Standoff	A1	ı	-	0.15
Overall Width	Е		2.80 BSC	
Molded Package Width	E1		1.60 BSC	
Overall Length	D		2.90 BSC	
Foot Length	L	0.30	-	0.60
Footprint	L1	0.60 REF		
Foot Angle	θ) 0° - 1		10°
Lead Thickness	С	0.08	-	0.26
Lead Width	b	0.20	-	0.51

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-091-OT Rev H Sheet 2 of 2

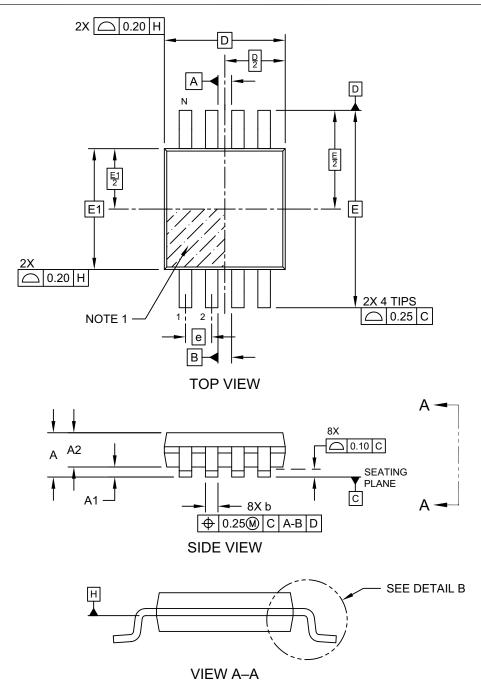
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	Е	0.95 BSC			
Contact Pad Spacing	С		2.80		
Contact Pad Width (X5)	Х			0.60	
Contact Pad Length (X5)	Υ			1.10	
Distance Between Pads	G	1.70			
Distance Between Pads	GX	0.35			
Overall Width	Z			3.90	

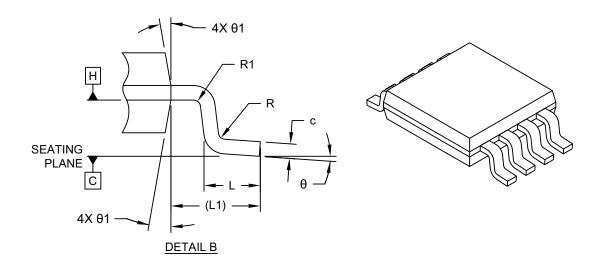
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091-OT Rev H

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

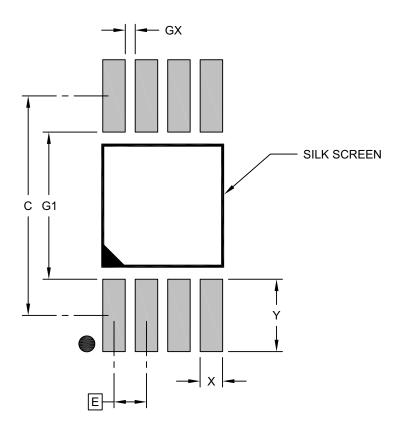
8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dim	MIN	NOM	MAX		
Number of Terminals	N		8		
Pitch	е		0.65 BSC		
Overall Height	Α	_	_	1.10	
Standoff	A1	0.00	_	0.15	
Molded Package Thickness	A2	0.75	0.85	0.95	
Overall Length	D	3.00 BSC			
Overall Width	E	4.90 BSC			
Molded Package Width	E1		3.00 BSC		
Terminal Width	b	0.22	_	0.40	
Terminal Thickness	С	0.08	_	0.23	
Terminal Length	L	0.40	0.60	0.80	
Footprint	L1	0.95 REF			
Lead Bend Radius	R	0.07 – –			
Lead Bend Radius	R1	0.07 – –			
Foot Angle	θ	θ 0° – 8°			
Mold Draft Angle	θ1	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E 0.65 BSC			
Contact Pad Spacing	С		4.40	
Contact Pad Width (X8)	Х			0.45
Contact Pad Length (X8)	Υ			1.45
Contact Pad to Contact Pad (X4)	G1	2.95		
Contact Pad to Contact Pad (X6)	GX	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-MS Rev F

APPENDIX A: REVISION HISTORY

Revision A (June 2025)

• Initial release of this document.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>X⁽¹⁾</u>	<u>-X</u> I	<u>/XX</u>	[XXX]	Exampl	es:	
Device:	Tape and Reel	Temperature Range = Single Zero-Drift			a) MIC33	3T-E/LTY	 Single Zero-Drift Operational Amplifier, Tape and Reel, Extended Temperature, 5-Lead SC70, NiPdAu Designator
Tape and Reel Option:	MIC2333 T = Ta	= Dual Zero-Drift Coape and Reel ⁽¹⁾	perational Ampil	Пег	b) MIC33	3T-E/OT	 Single Zero-Drift Operational Amplifier, Tape and Reel, Extended Temperature, 5-Lead SOT-23
Temperature Range:	E = -4	40°C to +125°C (Exter	nded)		c) MIC23	33T-E/MS	 Dual Zero-Drift Operational Amplifier, Tape and Reel, Extended Temperature, 8-Lead MSOP
Package:	OT = 5-	Lead Plastic Small Oo Lead Plastic Small Oo Lead Plastic Micro Sr	utline, SOT-23	OP	No.	T 15	
		ckel-Palladium-Gold (esignator (SC70 only)		acturing	Note 1: Tape and Reel identifier only appears catalog part number description. This identifier is used for ordering purpose is not printed on the device package.		number description. This used for ordering purposes and d on the device package. Check
Class:		on-automotive utomotive			with your Microchip Sales Office for packa availability with the Tape and Reel option.		

PRODUCT IDENTIFICATION SYSTEM (AUTOMOTIVE)

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>X</u> ⁽¹⁾	<u>-X</u>	<u>/XX</u>	[XXX]	Examp	les:	
Device	Tape and Reel	Temperature Range = Single Zero-Drift	Package Operational Am	Class	a) MIC33	33T-E/LTYVAO	= Single Zero-Drift Operational Amplifier, Tape and Reel, Extended Temperature, 5-Lead SC70, NiPdAu Designator,
Device:	MIC2333 = Dual Zero-Drift Operational Amplifier				b) MIC3	33T-E/OTVAO	Automotive Single Zero-Drift Operational Amplifier,
Tape and Reel Option:	T = Ta	pe and Reel ⁽¹⁾					Tape and Reel, Extended Temperature, 5-Lead SOT-23, Automotive
Temperature Range:	E = -40°C to +125°C (Extended)				c) MIC2333T-E/MSVAO = Dual Zero-Drift Operational Amplifier, Tape and Reel, Extended Temperature, 8-Lead MSOP.		
Package:	OT = 5-I	Lead Plastic Small Օւ Lead Plastic Small Օւ Lead Plastic Micro Sn	utline, SOT-23	OP			Automotive
		ckel-Palladium-Gold (esignator (SC70 only)		acturing	Note 1:	catalog part nu identifier is use is not printed o	identifier only appears in the umber description. This def for ordering purposes and on the device package. Check pohip Sales Office for package
Class:		on-automotive utomotive					the Tape and Reel option.

Microchip Information

Trademarks

The "Microchip" name and logo, the "M" logo, and other names, logos, and brands are registered and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or subsidiaries in the United States and/or other countries ("Microchip Trademarks"). Information regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legalinformation/microchip-trademarks.

ISBN: 979-8-3371-1418-7

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code.
 Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.